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Ray casting/ray tracing

Iterate over pixels, not objects.
Effects that are difficult with Z-buffer, are easy with 

ray tracing: shadows,  reflections, transparency, 
procedural textures and objects.

Assume image plane is placed in the virtual space
Algorithm:
for each pixel

shoot a ray r from the camera to the pixel
intersect with every object
find closest intersection
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Ray casting

Basic operation:  intersect a ray with an object.
Object types are more varied than for Z-buffer:

■ polygon
■ sphere
■ cone
■ cylinder
■ general quadric
■ height field
■ ...
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Pixel rays
Goal: Find direction of the ray to the center of the 
pixel (i,j). Let camera parameters be

c position 
αααα horizontal field of view 
v viewing direction 
u up direction 
s aspect ratio

Then the image half-width in the
“virtual world” units is

The half-height is
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Pixel rays
From coordinates in pixel units  to virtual world 
coordinates in image plane:

Pixel center of pixel (i,j) 
in pixel coords
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Pixel rays

u

v

uv ×

Virtual world coordinates of pixel (i,j):
image center + displacements.

Image center: c + vn
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Intersecting a line and a  plane

Same old trick:  use the parametric equation for the 
line, implicit for the plane. In the case of a pixel 
ray, b = p(i,j)-c
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Check for zero in the denominator;
ti should be positive for the 
intersection to be in front of the
camera.



 1999, Denis Zorin

Intersection with a sphere

Two questions are important: 
■ is there an intersection?
■ where are the intersection points?

Most rays do not hit a sphere if it is small enough, 
so a fast “no” to the first question will speed up 
our calculation.

To answer the second question, we have to solve a 
quadratic equation.  To answer the first, we do 
not have to.
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Intersection with a sphere

Question: is there intersection?
The distance from the center of the sphere to the 

ray should be less than radius. 

a c
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Projection of a-c on b:
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If R2 > r2, there is no intersection. 
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Intersection with a sphere

Question: what are the intersection points?
Plug in the parameteric ray equation into the sphere 

equation. Sphere equation can be written as
(a-q)2=r2, where a is the center and q is a point 
on the sphere.

Solutions of this equation, if any, are the values of 
parameter t for the intersection points.
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Some primitives

Finite primitives:
■ polygons
■ spheres, cylinders, cones
■ parts  of general quadrics

Infinite  primitives:
■ planes
■ infinite cylinders and cones
■ general quadrics

A finite primitive  is often an intersection of an 
infinite with an area of space
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Intersecting rays with objects

General approach: 
Use whenever possible  the implicit equation F(q) = 

0 of the object or object parts. Use parametric 
equation of the line of the ray, q = p+vt.

Solve the equation F(p+vt) = 0 to find possible 
values of t.  Find the minimal nonnegative value 
of t to  get the intersection point (checking that t 
is nonegative is important: we want intersections 
with the ray starting from p, not with the whole 
line!
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Polygon-ray intersections

Two steps:
■ intersect with the plane of the polygon
■ check if the intersection point is inside the 

polygon
We know how to compute intersections with the 

plane (see prev. lecture).  Let q=[qx,qy,qz] be the 
intersection point.

q
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Polygon-ray intersections

Possible to do the whole calculation using 3d 
points, but it is more efficient to use 2d points.  

Converting to the coordinates in the plane is 
computationally expensive. Idea: project to a 
coordinate plane (XY, YZ, or XZ) by discarding 
one of the vector coordinates.

We cannot always discard, say, Z, because the 
polygon may project to an interval, if it is in a 
plane parallel to Z. 

Choose the coordinate to discard so that the 
corresponding component of the normal  to the 
polygon is maximal. E.g. if nx > ny and nx > nz,
discard X.
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2D Polygon-ray intersections

Now we can assume that all vertices vi and the 
intersection point q are 2D points.

q

v1

v2

v3

v4

Assume that polygons 
are convex. A convex polygon
is the intersection of a set of 
half-planes, bounded by the 
lines along the polygon edges.
To be inside the polygon the 
point has to be in each 
half-plane.  Recall that the 
implicit line equation can be 
used to check on which side of 
the line a point is.
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2D Polygon-ray intersections

Equation of the line through the edge connecting  
vertices vi and vi+1:

If the quantity on the right-hand side is positive, 
then the point (x,y) is to the right of the edge, 
assuming we are looking from vi to vi+1.

Algorithm: if for each edge the quantity above is 
nonnegative for x = qx, y = qy then the point q is 
in the polygon. Otherwise, it is not.

In the formulas x and y should be replaced by x and 
z if y coord. was dropped, or by y and z if x was 
dropped.
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