
 1999, Denis Zorin

Ray tracing

 1999, Denis Zorin

Ray tracing

normal

normal

pixel ray

reflected ray
camera

shadow rays

 1999, Denis Zorin

Ray casting/ray tracing

Iterate over pixels, not objects.
Effects that are difficult with Z-buffer, are easy with

ray tracing: shadows, reflections, transparency,
procedural textures and objects.

Assume image plane is placed in the virtual space
Algorithm:
for each pixel

shoot a ray r from the camera to the pixel
intersect with every object
find closest intersection

 1999, Denis Zorin

Ray casting

Basic operation: intersect a ray with an object.
Object types are more varied than for Z-buffer:

■ polygon
■ sphere
■ cone
■ cylinder
■ general quadric
■ height field
■ ...

 1999, Denis Zorin

Pixel rays
Goal: Find direction of the ray to the center of the
pixel (i,j). Let camera parameters be

c position
αααα horizontal field of view
v viewing direction
u up direction
s aspect ratio

Then the image half-width in the
“virtual world” units is

The half-height is

u

v

αααα
v

View from
above

2
αtgnw = n

w

2
αtgsnh =

 1999, Denis Zorin

Pixel rays
From coordinates in pixel units to virtual world
coordinates in image plane:

Pixel center of pixel (i,j)
in pixel coords







 ++

2
1

2
1 j,i2

1+j

2
1+i

w

pixels
pixels

N

Pixel size:

M
h

N
w 22 ×

Displacements of the pixel from the image center
in virtual space units:

w
N
wi,

M
hjh −






 +






 +− 2

2
12

2
1

 1999, Denis Zorin

Pixel rays

u

v

uv ×

Virtual world coordinates of pixel (i,j):
image center + displacements.

Image center: c + vn

uvw
N
wiu

M
hjh

vnc)j,i(pixel

×






 −





 ++














 +−

++=

2
2
12

2
1

 1999, Denis Zorin

Intersecting a line and a plane

Same old trick: use the parametric equation for the
line, implicit for the plane. In the case of a pixel
ray, b = p(i,j)-c

n

pqi

c b

0=−+)n,pbtc(i

)n,b(
)n,pc(ti −−=

Check for zero in the denominator;
ti should be positive for the
intersection to be in front of the
camera.

 1999, Denis Zorin

Intersection with a sphere

Two questions are important:
■ is there an intersection?
■ where are the intersection points?

Most rays do not hit a sphere if it is small enough,
so a fast “no” to the first question will speed up
our calculation.

To answer the second question, we have to solve a
quadratic equation. To answer the first, we do
not have to.

 1999, Denis Zorin

Intersection with a sphere

Question: is there intersection?
The distance from the center of the sphere to the

ray should be less than radius.

a c

b

Projection of a-c on b:
()b

b
b,cad 2

−=

The square of length:

d

() 2

2

2
2 Rb

b
b,caca)d)ca((=













 −−−=−−

If R2 > r2, there is no intersection.

 1999, Denis Zorin

Intersection with a sphere

Question: what are the intersection points?
Plug in the parameteric ray equation into the sphere

equation. Sphere equation can be written as
(a-q)2=r2, where a is the center and q is a point
on the sphere.

Solutions of this equation, if any, are the values of
parameter t for the intersection points.

22 r)btca(=−−
02 2222 =−−+−− r)ca(t)b,ca(tb

A B C
02 =++ CBtAt

 1999, Denis Zorin

Some primitives

Finite primitives:
■ polygons
■ spheres, cylinders, cones
■ parts of general quadrics

Infinite primitives:
■ planes
■ infinite cylinders and cones
■ general quadrics

A finite primitive is often an intersection of an
infinite with an area of space

 1999, Denis Zorin

Intersecting rays with objects

General approach:
Use whenever possible the implicit equation F(q) =

0 of the object or object parts. Use parametric
equation of the line of the ray, q = p+vt.

Solve the equation F(p+vt) = 0 to find possible
values of t. Find the minimal nonnegative value
of t to get the intersection point (checking that t
is nonegative is important: we want intersections
with the ray starting from p, not with the whole
line!

 1999, Denis Zorin

Polygon-ray intersections

Two steps:
■ intersect with the plane of the polygon
■ check if the intersection point is inside the

polygon
We know how to compute intersections with the

plane (see prev. lecture). Let q=[qx,qy,qz] be the
intersection point.

q

 1999, Denis Zorin

Polygon-ray intersections

Possible to do the whole calculation using 3d
points, but it is more efficient to use 2d points.

Converting to the coordinates in the plane is
computationally expensive. Idea: project to a
coordinate plane (XY, YZ, or XZ) by discarding
one of the vector coordinates.

We cannot always discard, say, Z, because the
polygon may project to an interval, if it is in a
plane parallel to Z.

Choose the coordinate to discard so that the
corresponding component of the normal to the
polygon is maximal. E.g. if nx > ny and nx > nz,
discard X.

 1999, Denis Zorin

2D Polygon-ray intersections

Now we can assume that all vertices vi and the
intersection point q are 2D points.

q

v1

v2

v3

v4

Assume that polygons
are convex. A convex polygon
is the intersection of a set of
half-planes, bounded by the
lines along the polygon edges.
To be inside the polygon the
point has to be in each
half-plane. Recall that the
implicit line equation can be
used to check on which side of
the line a point is.

 1999, Denis Zorin

2D Polygon-ray intersections

Equation of the line through the edge connecting
vertices vi and vi+1:

If the quantity on the right-hand side is positive,
then the point (x,y) is to the right of the edge,
assuming we are looking from vi to vi+1.

Algorithm: if for each edge the quantity above is
nonnegative for x = qx, y = qy then the point q is
in the polygon. Otherwise, it is not.

In the formulas x and y should be replaced by x and
z if y coord. was dropped, or by y and z if x was
dropped.

() () 011 =−−+−− ++)vy(vv)vx(vv y
i

x
i

x
i

x
i

y
i

y
i

