Image Synthesis

Denis Zorin

Web page: http://www.mrl.nyu.edu/dzorin/rend05

(also linked to the CS class list)

Class time: Wed, 1:30-3:20pm

Prerequisites: strong programming skills, basic geometry, vector algebra, calculus; some familiarity with computer graphics assumed.

Requirements: 2 written assignments, a final project, 2 class presentations.

Programming

Final project

- implement an interesting rendering technique
- a list of possible projects will be provided

Different aspects of rendering:

- CS and engineering: algorithms, output devices
- Physics: modeling appearance, light propagation
- Perception: what artifacts are most objectionable, what can we get away with

Visual Cues

- Geometry
 - Occlusion
 - Perspective
- Color
 - Shading
 - Shadows
 - Transparency
 - Aerial perspective
- Stereo
 - Motion parallax
 - Stereopsis

History of Rendering

60-70s: mostly geometry

- Transformation
- Hidden line algorithms
- Simple shading and texturing
 - Gouraud, Phong shading

Now most of this can be done in real time in hardware

History of Rendering

80-90: Optics

- Better reflection models
 - Cook and Torrance, He
- Illumination
 - Ray tracing
 - Radiance
- Capture of real data
 - Image-based rendering

Nonphotorealistic rendering

Close to reality is not always the best for a particular purpose

- Architectural drawings, medical atlases, repair manuals use nonrealistic styles
- Artistic uses: fewer constraints on expression
- Visualization: see the invisible

1st generation (mid 80s)

acceleration for 3d line rendering

2nd generation (end of 80s)

lighting, Z-buffer

3d generation (early 90s)

textures, antialiasing

4th generation– programmable

revolutionary, bridging the gap between offline high-quality and interactive techniques

Physically-based Rendering

- Physics of light
 - geometric optics
 - radiative transfer
- Some perception
 - what is color
 - how many colors are necessary

Topics

- Basic ray tracing -- review
- Light properties, radiometry
- Reflection models
- Advanced ray tracing (Monte Carlo, bidirectional, Metropolis...)
- Radiosity
- Nonphotorealistic rendering
- Algorithms for programmable hardware

Ray tracing

by Martin Moeck, Siemens Lighting

Classical ray tracing

Artifacts: perfectly sharp shadows, ideal reflections, no diffuse interreflections

Light around the corner

images by Eric Veach

© 2005, Denis Zorin

Caustics

image by Eric Veach

© 2005, Denis Zorin

Caustics

Radiosity

image produced using Lightscape

Nonphotorealistic rendering

