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Abstract

Curvature-based energy and forces are used in a broad
variety of contexts, ranging from modeling of thin plates and
shells to surface fairing and variational surface design.

The approaches to discretization preferred in different
areas often have little in common: engineering shell anal-
ysis is dominated by finite elements, while spring-particle
models are often preferred for animation and qualitative
simulation due to their simplicity and low computational
cost. Both types of approaches have found applications
in geometric modeling. While there is a well-established
theory for finite element methods, alternative discretizations
are less well understood: many questions about mesh de-
pendence, convergence and accuracy remain unanswered.

We discuss the general principles for defining curvature-
based energy on discrete surfaces based on geometric
invariance and convergence considerations. We show how
these principles can be used to understand the behavior of
some commonly used discretizations, to establish relations
between some well-known discrete geometry and finite
element formulations and to derive new simple and efficient
discretizations.

1. Introduction

In physics, mechanical engineering and biology
curvature-based functionals are used to model the behavior
of bending surfaces: car bodies, roofs of buildings, polymer
vesicles and biological membranes. In geometric modeling
these functionals are used for surface fairing, feature
detection and defining variational surfaces; in computer
animation, curvature-based functionals are used for
simulating motion of deformable objects, most commonly,
cloth animation.

While in most cases the continous energy functionals are
very similar, their discretizations may differ greatly. The
most mathematically consistent approach to discretization
is to use a smooth parametric surface representation with
sufficient approximation power. In this case curvature-
based discrete energy can be computed by analytic or
numerical integration of standard expressions for curvature
of parametric surfaces. However, this aproach is often

impractical, due to relative inefficiency and complexity
of basis functions used in high-order constructions. Com-
monly used approaches in different application areas range
from nonconforming finite elements in engineering applica-
tions to bending springs in animation. Finite elements typ-
ically rest on more rigorous mathematical foundation and
emphasize convergence to the solution of the continuum
problem. Discretizations applied in other areas, geometric
modeling and animation in particular, often are based on
qualitative considerations and are designed for efficiency
and simplicity.

In this paper we present a brief overview of curvature-
based energy functionals and their discretizations, and dis-
cuss a set of natural requirements that can be used to eval-
uate different discretizations. Several simple general princi-
ples result in surprisingly specific conditions, especially for
discretizations using a small number of degrees of freedom
per term. Our focus is on the relationship between the
solution of the continuum energy-minimization problems
and discrete problems. In particular, we examine conver-
gence of discrete solutions to the continuum solutions. We
discuss how simple convergence conditions can be used
to understand the behavior of an energy functional, as
well as establish requirements for meshes used to represent
deformable surfaces.

Acknowledgements. Some of the general ideas outlined in
this paper grew out of the work on shell simulation done
jointly with Eitan Grinspun, Adrian Secord and Jeff Han.
This work was supported by NSF awards CCR-0093390
and CCR-9988528.

2. Continuous curvature-based functionals

The simplest form of the curvature-based energy is the
integral of the mean curvature:

k/szs )]

where the integral is computed over the surface and £ is a
constant.

The relationship between curvature and bending energy
first appeared in an explicit form in Euler’s elastica, curves
minimizing the integral of squared curvature. The exact
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nature of the relationship between the bending forces in
thin plates and their curvature has initially emerged in
the work of Sophie Germain [7]; a more complete theory
was developed by Kirchhoff [8]. Initially the focus was
on small deformations, in which case the curvature could
be approximated by derivatives of displacements; Love
[22, 21] has extended this theory to deformations of thin
shells of arbitrary undeformed shape. The case of large
deformations of plates was considered by von Karman
[18]; Complete invariant equations for thin shells are often
referred to as Koiter’s model [20]. In all cases a thin plate
or a shell is modelled by a two-dimensional surface, with
shear effects in the volume of the shell ignored. Taking these
effects into account leads to a different set of models, with
additional energy terms which we do not consider here.

Among the models that we consider Koiter’s model
has the most general form. The model is derived under
several assumptions: shell thickness h is much smaller than
the minimal radius of curvature; the normal lines to the
middle surface in the undeformed state are deformed into
normal lines to the middle surface in the deformed state
(the Kirchhoff-Love assumption); components of stress in
the normal direction can be assumed to be zero. In addition,
small strains are assumed and linear elasticity constitutive
law is used.

Under these assumptions, the total energy of the de-
formed surface can be separated into two parts: the mem-
brane energy, which we do not consider, and the bending
energy. The expression for the bending energy can be
written in a compact form using the shape operator. Recall
that the the shape operator A(p) at a point p of a smooth
surface is defined by its action on tangent vectors: for a
tangent vector ¢, At = —0yn, where 9, is the derivative in
the direction of ¢ and n is the unit normal to the surface. The
eigenvalues of this operator are principal curvatures, and its
eigenvectors are principal curvature directions. If .S denotes
the gradient of surface deformation at a point, then Koiter’s
bending energy can be written in the form

g (I/(Tr (STAS — Ag))* + (1 — v)Tr ((STAS — A0)2))
(2

where v is the Poisson ratio, A and Ag are the shape opera-
tors for the deformed and undeformed surfaces respectively.
The flexural rigidity D is related to the Young modulus and
is given by Eh3/24(1 — v/?). This expression can be given
more intuitive form by observing that for small strains the
difference between S” AS and A are of higher order and can
be neglected, yielding

g (I/(Tr (AA)?+ (1 —v)Tr ((AA)Q)) 3)

where AA = A — Ag. To make the geometric meaning
of this expression clear it is useful to write it in terms of
familiar invariants: mean curvature and Gaussian curvature.
As two surfaces participate in the expression, an additional
needed geometric invariant is the rotation 3 of the principal
curvature directions under deformation. One can show that
(3) can be written as

D ((1+v)AH? + (1 — v)(AA® + 4AAgsin® B))  (4)

where A = H? — K is the half-difference of the prin-
cipal curvatures. This expression clarifies the relationship
between Koiter’s formulation and the simplest energy (1):
if we assume that the undeformed state is flat, then Ay =
Hy = 0 and the expression reduces to D [(2H? + (1 —
v)K). The second term remains constant on surfaces with
fixed boundaries and fixed normals on the boundary. This
term can also be neglected if the deformations are close to
isometric. This leaves only the term of the form (1). We
also observe that in (3) for flat undeformed configurations
the first term [ (TrA)? is proportional to the integral of the
squared mean curvature, and the second term f TrA2 =
J K3 + K3 is often called the total curvature functional in
geometric modeling literature.

In mathematical literature the functional (1) is known
as the Willmore energy as the investigation of surfaces
minimizing this energy started with the work of Willmore
[37] ([38] is a more accessible reference). The Euler-
Lagrange equation for this functional has the form

AyHA42H(H? - K) =0 5)

where Aj; denotes the Laplace-Beltrami operator. This
equation can be used to define the Willmore flow, which
was demonstrated to be useful for surface restoration [4].

A variation of this functional, possibly with a nonzero
undeformed mean curvature, is known in membrane physics
literature as Canham-Helfrich energy [3, 12]:

/ (H — Hy)2dS ©)

We note that this is not a special case of Koiter’s bending
energy, unless k1 = ko for both deformed and undeformed
configurations, as it is for spheres. The reason for this is
that membranes modeled by this equation are liquid. For
liquid membranes, one can neglect the work required to
transform the surface into a configuration with the same
principal curvatures but with principal curvature directions
aligned with a material coordinate system a different way.

Functionals used in geometric modeling. Functional (1) is
the most common foundation for various discrete function-
als used to construct variational surfaces. In many cases a
linearized form of the functional is used, replacing curva-
tures with second partial derivatives of the parameterization,
or with Laplace-Beltrami operators computed with respect
to a fixed approximate surface shape. Discrete functionals
are often derived not by formally discretizing (1) but by
using simplified expressions capturing its properties qual-
itatively.

Another important family of functionals are based on
minimizing curvature variation; we do not consider this
types of functionals in this paper, but similar considerations
would apply to their discretization.
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3. Desirable discrete energy properties

To simplify our presentation, we focus on the functional
(1), but similar considerations apply for the more general
form (3). We also use the curve energy [ k2ds to provide
simple examples. Before we discuss several discretizations
of this functional, we formulate a number of conditions that
the discrete functional should satisfy.

We use p to denote the vector of the vertices of the
surface or curve and E(p) > 0 to denote the discrete
energy function. We will also consider discretizations using
additional angular degrees of freedom; the conditions we
discuss also apply in these cases.

We assume that the mesh is split into nonoverlapping
domains D; with areas A;. For each domain we use vertices
p; of a submesh [V; contained in a fixed-size neighborhood
of D; to compute a local curvature estimate H;(p;). For
example, D; can be a triangle or a Voronoi area of a vertex
or an edge, and IV; can be all vertices connected by an edge
to a vertex in D;.

The complete curvature functional is defined by

E(p) = ZAi(Hi(pi))2 (7

Similar definitions apply in the curve case which we use in
examples.

Geometric invariance conditions. This group of conditions
ensures that the geometric behavior of the discrete energy
function matches the essential features of the continuous
functional.

Gl. For planar (collinear for curves) configurations of
control points the energy vanishes: E(p'"") = 0. This
requirement ensures that planar surfaces and straight
lines have zero curvature.

G2. The energy is invariant with respect to rigid transfor-
mations: E(p) = E(Tp), where Tp is defined by
applying a rigid transform to each control point.

G3. For surfaces, the energy is invariant with respect to
uniform scale: E(sp) = E(p); for curves, the energy
scales as 1/s: E(sp) = (1/s)E(p).

We note that functions based on angles between nor-
mals and discrete geometric measures of curvature satisfy
requirements G1 and G2; for careful choice of scaling coef-
ficients G3 is also satisfied for any reasonable functional.

Convergence conditions. Convergence conditions are for-
mulated for sequences of meshes with triangle size, as
measured by the radius of the circumscribed circle, going to
zero. Additional constraints are typically needed to ensure
convergence; a weak constraint may be that the triangle as-
pect ratio stays bounded; a stronger constraint may require
a sequence of regularly subdivided meshes. We call meshes
belonging to a specified class admissible. Our discussion
here is informal; more details will be provided in [42].

In general, for a complete theory of convergence one
needs to introduce suitable norms and use functional analy-
sis. Fortunately, if we are interested only in the necessary

conditions for convergence, it is sufficient to look at the
convergence of the total energy.

We assume that we have a well-posed continuous prob-
lem, and a sequence of discrete problems with fixed bound-
ary values for the discrete problems obtained by sampling
the fixed boundary values of the continuum problem. For
any reasonable definition of convergence of surface approx-
imations, we would expect the following conditions to hold:

C. For any sequence of solutions of discrete problems
for admissible meshes and mesh triangle size going
to zero, the energy of the solution of the discrete
problem converges to the energy of the solution of the
continuous problem.

This condition results in very specific constraints on the
linearized version of the discrete energy (7), which we
discuss next.

Linearized energy. To convert the general conditions on the
energy to specific constructive requirements, we consider a
very specific case: small deformations of planar surfaces
(plates). Any “good” general discrete energy functional
should also work in this case. Let u be the vector of
displacements at each vertex; for small displacements, u we
can replace E(p) by its quadratic approximation: E(pg +
u) = E(po) + VETu+(1/2)u’ V?Eu, where V2 E is the
Hessian of E at pg. As the planar configuration pg has zero
energy, and this is the minimal possible energy, E(pg) = 0
and VE(pg) = 0, which leaves only the quadratic term. Us-
ing (7), we obtain E'"(u) = (1/2)Y, Ajul VZ(H?)u,.
As V2(H?) = 2H,;V?H; + 2VH;VH! and the energy
is zero for the planar configuration the expression for the
linearized energy is

) 1
Elzn(u) — 5 ZA,L(VH,L(I)Z)TU)Q (8)

The conditions on the linearized energy are the conditions
on the gradient of the mean curvature estimate for planar
configurations. Geometric invariance and scaling conditions
G1-G3 for E(p) should also hold for E'"(u), as it can
be easily shown by differentiating these conditions; further-
more these conditions have to hold for each term in the
expression for energy. One immediate consequence of this
observation is that only the components of displacements
perpendicular to the plane of the initial configuration can
have influence on VH;(u;): for any in-plane deformation
the initial configuration remains planar, and the curvature
remains zero: VH} u; = 0 for any u; perpendicular to the
plane normal. This allows us to simplify the expression for
the linearized energy further:

) = 3 S A(TED pw? )

where u; = (n-u,) are the normal displacements and VH
are the corresponding components of the gradient.

It is instructive to consider the constraints imposed by
geometric conditions only on V(H[*)Tu for the minimal
number of degrees of freedom, which in the case of curves
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is 3. In this case V(H)Tu can be written as c;u;_1 +
Bit; + Yiuiy1. As the energy remains zero for any planar
configuration, if u; are sampled from a line it should remain
zero; this leads to the conditions of orthogonality of the
gradient to constants and linear functions: o; + 3; +7v; = 0
and l;_15; + (i + li—1)v: = 0, where [; is the distance
between p; and p;41. This immediately yields

VH] = ki(1/lio1, —(1/li—1 + 1/1;),1/1;) (10)

i.e. the second divided difference up to a scale factor; by
scale invariance, the factor k; depends only on the ratio
l;/li—1. We observe that invariance considerations define
the linearized energy up to a scale factor for a small number
of degrees of freedom. We note that the choice of k; is
not arbitrary: incorrect choices may yield incorrect ratios of
energy terms for different ¢. Only the convergence condition
C1 allows one to find the correct factor. One can easily
check that the expression (10) is proportional to the gradient
of 20, /(l; + 1;—1), where 0; is the angle between normals
to two adjacent line segments (p;—1,p;) and (p;, Pi+1),
i.e. all geometrically invariant expressions for the curvature
coincide with this one up to a non-dimensional scaling
constant.

Convergence conditions for the linearized energy. To con-
vert the general condition C to specific conditions for the
gradient of the discrete curvature functional, we further
specialize the situation that we consider, by considering
solutions of the continuum problem that can be computed
explicitly.

One can show that the energy of the solution of the
linearized discrete problem should converge to the solution
of the linearized continuum problem. The linearized form
of the energy (1) is simply

/([“)mu + Oyyu)?dS (11

where (z,y) is a coordinate system in the plane, and
[ (w")?dl for the curve case.

The Euler-Lagrange equation for this functional is the
biharmonic equation. It is known that under certain assump-
tions on the boundary this problem has a unique solution
for Dirichlet and Neumann boundary conditions specified.
One can easily check that it is a solution, if we specify
the boundary conditions by evaluating a second-degree
polynomial v = ¢(z,y) on the boundary of the domain.
Second-degree polynomials are special solutions, as the
value of the integrand in (11) remains constant.

There are two explicit and easy-to-check conditions
that follow from the convergence requirement. The crucial
observation, on which these conditions are based, is related
to resampling a quadric using the same sampling pattern
but possibly scaled and translated. We focus on the one-
dimensional case, the two-dimensional case is similar. Con-
sider a local curvature estimate V HT po)u, associated with
vertices p; ... pm, P = (Tk, ux), P = (&, 0). Suppose
u is a quadric, i.e. ux = ax% (we do not include linear and
constant terms as these make no contribution). Suppose we

sample the same quadric at points ., = hxy + t. It is easy
to verify that the corresponding local curvature energy term
scales exactly as h as the sample point spacing is scaled by
h.

We are interested in sampling pattern x which are tilable.
We consider curves defined by normal perturbation of
an initial linear state. A sequence of sample points is a
tiling if the linearized energy of the complete curve is a
sum of energy terms defined by subsequences obtained by
translation and scale from the original pattern x. We call a
sampling pattern tilable if one can have an arbitrary long
tilings with respect to this pattern.

For example, for three-point curvature approximation
described above the simplest family of tilable patterns
are sequences of points x1,...x, for which the distances
between z2 — 1 and z,, — x,_1 are equal: one can link
copies of one of these patterns together overlapping the last
two points of each copy with the first two points of the next.

We call a vertex of a mesh or a polygonal line interior,
if for any triangle (segment) added to the boundary of the
mesh, its energy is not affected by this vertex; for curves and
three-point curvature estimates, this excludes two points on
each side.

Exact scaling of the linearized energy for quadrics has
two remarkable consequences for tilable sampling patterns:

Cl. If a mesh or a polygonal line is sampled from a
quadric, and the sampling pattern can be tiled, the dis-
crete energy should reproduce the continuous energy
of quadrics exactly;

C2. If the discrete energy density is constant for a polygo-
nal line and its sampling pattern can be tiled, the total
energy should be minimal with respect to variation of
all interior vertices.

The reason for the first requirement can be understood
as follows. Suppose for a tilable sampling pattern and for a
quadric, the energy estimate differs from the correct value
by a factor a # 1. For a given line segment we can construct
a series of approximations of the quadric by shrinking the
original pattern by a factor of 2™, and tiling 2™ copies of the
original pattern. The energy error for each tile will scale as
the tile size, i.e. 27"; as the number of tiles grows as 2", the
total error does not decrease.

The line of reasoning for the second requirement is
practically the same: if we assume the first requirement
satisfied, we know that we can at least reproduce the energy
of the quadric exactly. However, nothing guarantees that we
cannot obtain a lower energy aF, for some a < 1, and if
we can, we can obtain the same error for an arbitrarily fine
mesh.

We note that the notion of tilable patterns clarifies how
one can obtain convergence even for energy functionals
satisfy the requirements only for a limited class of patterns
(e.g. with regular connectivity): it is necessary to restrict
allowable refinement procedures to those producing only
the “good” patterns almost everywhere.

In all cases that we have considered, any pattern for
which conditions C1 or C2 are violated can be used to
construct a tilable pattern containing it, which also violates
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Cl or C2. As a result it makes sense to enforce these
conditions for any sampling pattern, or to exclude “bad”
patterns by enforcing special refinement rules.

These conditions closely parallel the famous patch test
widely used in the finite element community. However, it
is based primarily on geometric considerations, and quite
general assumptions on the way the discrete energy is
computed without introducing a basis or explicit high-order
approximations of the continuous surface. One important
difference is the need to use tilable sampling patterns, as we
do not assume that all degrees of freedom used for an area
A; correspond to points inside the area.

One-dimensional examples. Applying condition C'1 to the
three-point linearized energy (10), we immediately obtain
the value for the constant; not surprisingly, the resulting
expression is the second finite difference, scaled by the
length of the segment associated with these three points.
This length, as well as the point at which we compute the
energy density, can be chosen in different ways. Consider
two possible choices; for simplicity, we assume that points
are equispaced in the undeformed configuration. In the first
case, we compute the total energy as

1 2

Z ﬁ(Qui — Ui — Uiy1) (12)
i

associating an interval of length h with each term. In the

second case, we use a sparser sampling, with one term for

each interval of length 2h:

2
Z ﬁ(Quzi — ugi—1 — Ugiy1)” 13)
1

Both approaches satisfy condition C1. To check condi-
tion C2, we need to verify that the gradient of the energy
evaluated for a quadric is zero.

We observe that it is equivalent to verifying that for any
displacement of the interior nodes from the planar config-
uration, the total discretized curvature remains zero, as the
total (linearized) curvature in the first case is computed as

(2ui —ui—1 —Uip1) = ~ (U1 — U+ Up—1—Up) =0

=
S

n—1
i=1

assuming that two points on each side are fixed.

In the second case, it is easy to see that C2 is not satisfied,
and the energy can be decreased below the energy of the
quadric, e.g. by setting ug; = (ug;—1 —u2;+1)/2 for interior
points. The discrete energy in this case does not even have
a unique minimum (Figure 1): one can make it zero for
arbitrary odd number of points, by placing every even-
numbered point precisely at the midpoint of its neighbors.
This functional can be used to estimate the energy of a
curve, but cannot be used to compute the minimal curve.

We can easily construct artificial examples for which
the condition C2 is violated in a more subtle way, and a
unique solution still exists e.g. by assigning different areas
to sequential points (Figure 1, curve b).

(14)

Figure 1. Results of optimizing different lin-
earized squared curvature functionals in 1d;
a) The functional satisfies both conditions
C1 and C2; a quadric is exactly reproduced
from boundary values. b) Condition C2 is
not satisfied; the area allocated to each local
energy term oscillates from one point to
the next, with increasing amplitude from left
to right. ¢) Condition C2 is not satisfied,
functional (13) is used, i.e. there are half as
many terms. The solution is not unique in this
case.

We also observe that it is possible to satisfy condition C2
without satisfying C1: one can rescale the energy arbitrarily.

Although the presentation above was restricted to ver-
tices as degrees of freedom, one can easily see that any
local geometric degrees of freedom (surface normals, mean
curvature etc) could be used, and the reasoning would still
hold with only minor adjustments. For example, if normals
are added to the mesh as degrees of freedom, one needs to
take into account invariance of normal with respect to scale,
and for linear analysis observe that for small displacements
the projection of the deformed normal to the original plane
is the gradient of the displacement function.

4. Discrete energy functionals

Having established the basic requirements for the dis-
crete energy functionals in the previous section, we now
apply them to evaluate existing functionals for meshes.
The brief overview in this section is not by any means
intended as comprehensive: we focus on what we consider
representative examples, which demonstrate the relation-
ships between different approaches. The situation for two
dimensions is much more complex than what we have
observed for curves: for the minimal number of points, it
is impossible to satisfy C1 and C2 for general meshes.

An overview of discretization approaches. In engineering
applications, the principal tool for discretizing thin shell
problems is the finite element method, which reflects the
fact that accuracy is a primary concern. The number of shell
finite elements is quite large (see e.g. a survey [6] of just
one family of such elements). The two main groups of finite
elements for plates and thin shells are conforming elements
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with C'! continuous basis functions and reproducing poly-
nomials of degree two, and nonconforming, which are not
C'-continuous.

Most finite element techniques share two distinctive
features. First, it is common to linearize the problem first,
and construct methods for solving the linear problem, rather
than discretize the nonlinear formulation and then linearize
the discrete formulation. Second, all degrees of freedom
associated with an area of the mesh are typically assigned
to nodes in this mesh (some notable exceptions include
[25] and [26, 27] which we discuss below). Most of such
elements use rotational degrees of freedom.

The advantage of linearizing the continuous problem is
that that for many engineering problems deformations are
small, and the linearized form is sufficient. In addition,
this makes it possible to ensure that the method satisfies
convergence conditions for small deformations by construc-
tion. For conforming elements, convergence is assured by
the general FEM theory. and most practical nonconforming
elements are shown to satisfy the patch test, [17] which is
analogous to our conditions C1 and C2 (whether various
forms of the patch test are sufficient or necessary for
convergence is discussed in a number of books and papers:
[41, 31, 16, 32, 34]).

As a downside, geometric invariance properties for large
deformations are often not guaranteed by construction,
and in a few cases the transition from linear to nonlinear
problem results in the loss of invariance e.g. with respect to
the change of node numbering.

In contrast, high order finite elements are rarely used in
geometric modeling, possibly because they usually provide
visually poor surface approximation (e.g. nonconforming
elements can be even discontinuous). Most early work
on fairing applied functionals directly to spline patches.
The geometric functional (1) is often replaced by its lin-
earization or linearization of the equivalent total curvature
functional f2H2 — KdS (e.g. [35, 10]). Variational mod-
eling for meshes based on curvature-based functionals was
explored by many authors; some examples are [36, 19, 29,
40, 30].

Clarenz et al. [4] recently demonstrated that linear finite
elements can be successfully applied to curvature-based
functionals if additional degrees of freedom are introduced.
The most commonly used approximation to the integral
mean curvature for meshes was described in [15, 28];
variations of this approach were systematically considered
in [23] and it was extended to shape operators in [5].
For this type of approaches, the situation is quite different
from finite elements: the nonlinear continuous functional
is discretized directly, without linearizing it first; the ge-
ometric invariance conditions are satisfied automatically,
however, convergence is not guaranteed and indeed can be
shown to hold only for a restricted class of meshes [39].
Yet another set of techniques were developed for curvature
estimation: most of these are based on local polynomial fits
(see [9] for a survey). One can use these estimates to obtain
a discrete energy approximation. Geometric invariance is
guaranteed by construction, and the convergence condition
C1 is usually satisfied, however, nothing in these construc-

tions ensures that condition C2 is satisfied.

In computer animation, a functional similar to Koiter’s
model (although using second fundamental forms instead
of shape operators) was described in [33]. However, the pri-
mary focus in most of animation literature was on efficient
cloth simulation, and bending is accounted for by using
springs with empirically determined parameters. Another
common way to account for bending of surfaces represented
by meshes is to use forces proportional to the angles
between normals of adjacent faces (e.g. [1, 11, 2]). In [11]
the connection between this approach and the definition of
discrete mean curvature was observed.

While radically different approaches can be used to
derive curvature energies, if only few degrees of freedom
are used for every local energy term, the results may be
quite similar especially if we consider linearized form of
the energy. To illustrate the relationship between different
approaches we discuss several representative examples.

Discrete shell energy. The most basic type of energy which
can be regarded as a curvature approximation uses local
terms associated with edges. Specifically, the mean cur-
vature associated with an edge of length /. and the angle
between normals of faces adjacent to the edge equal to 8 is
taken to be

Hps(e) = 1.0/A (15)

The corresponding energy term is (H(e))?A = 0212 /A,
where A is the area associated with the edge which can be
chosen in different ways (e.g. the Voronoi cell area). This
formula is derived based on the observation that the mean
curvature normal (that is, Hn, where n is the unit surface
normal) can be defined as the gradient of the area of the
surface with respect to point position.

This simple formula closely resembles the one-
dimensional formula for curvature considered in the
previous section. Similar discretizations are widely used
in computer animation. While this formula satisfies
geometric invariance conditions, it cannot possibly satisfy
the convergence condition C1: as one cannot recover the
second derivatives of the quadric uniquely from just four
points (vertices of two adjacent triangles) which we need
to compute this energy. Remarkably, condition C2 can be
shown to be satisfied.

Averaged energy. While local mean curvature approxima-
tion (15) does not converge pointwise, it does converge
when averaged over sufficiently large areas, under certain
assumptions on mesh refinement. One can extend the idea
of the discrete shell energy to triangle-based and vertex-
based local energy terms by summing the discrete mean
curvatures or curvature normals first, and then squaring to
obtain a local energy term. For example for a triangle we
can use

HDs(T) = 1/2A(1191 + 1505 + 1393) (16)

where the factor 1/2 reflects the fact that each edge is shared
by two triangles, and A is the area of the triangle. This
corresponds to computing the gradient for a larger area, and
may improve convergence in some cases. Unfortunately, for
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Figure 2. Discrete shell energy local term
depends only on the angle between triangle
normals 0 and the length of edge e.

any fixed-size area, one cannot achieve convergence for a
general class of meshes: one needs to restrict consideration
to regular grids [39, 14].

This type of triangle-based discretizations are closely
related to a special case of rotation-free elements described
in [27], although these elements are derived using different
considerations.

When averaging is applied to the mean curvature nor-
mals for each edge surrounding a vertex v, we get the
expression

1
Hps(V)n = 7 Z 1;0:n; 17)

where [; is the length of the i-th edge with endpoint v and
A is the area associated with the vertex (see [23]). This
functional is equivalent, up to second-order terms in 6; to
the well-known cotangent formula

Hps(Vin = 52(Yeilcotai +cot ) (18)

%

where a; and (; are the two triangle angles adjacent to the
i-th edge at its endpoint v; # v and e; is the vector from v
to v;.

The vertex-based formula, which appeared in [15, 28] is
widely used, but also lacks convergence for general meshes.
For a proper choice of areas associated with each vertex, it
satisfies condition C2, as all energies based on summing of
terms (15) over areas: for all such energies, constant discrete
curvature solutions are stationary.

Quadric fit energy. An alternative approach would be to
use a quadric or higher-order polynomial fit for a part of
the mesh and compute the energy of the quadric, as it is
done e.g. in [36]. If we use at least six vertices, we can
guarantee that condition C1 is satisfied under mild assump-
tions. However, for a minimal set of samples (Figure 3)
using exactly six degrees of freedom, in general one cannot
simultaneously satisfy condition C2, which was possible in
the linear case for three-point local energy terms.

The examples of [39] and [14] indicate that it may be im-
possible to design efficient and general local energy terms

Figure 3. Averaged curvature for a triangle
depends on the angles 6, between the
triangle normal and the normals to the
adjacent triangles. The linearization of this
energy is similar to the rotation-free finite
element construction in [26].

Figure 4. Variables used for the midpoint nor-
mal energy. The extra variables ©; measure
deviation of the actual (unknown) surface
normal n,,;; from the average of normals
Nawg = (0 + n;)/|In + n,|| (variables for only
one edge out of three are shown).

using positional degrees of freedom only, without either
excluding certain local mesh configurations or treating them
as special cases.

Midpoint normal energy. The observations about curvature
approximations based on positions only leads us to consid-
ering additional degrees of freedom.

One way to introduce additional degrees of freedom
to a mesh approximating a smooth surface is to assign
independent unit normals to mesh points. Just as mesh
vertices are regarded as samples of a continuous surface,
one can regard normals as samples of surface normals; each
normal represents up to two rotational degrees of freedom.
However, we can choose normals for which one degree of
freedom is fixed up to higher-order terms, by using normals
assigned to edge midpoints.

Consider the plane spanned by the normal and the edge;
then if we approximate the intersection of the surface with
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this plane by a parabola, the normal should be perpendicular
to the edge. As this is the best approximation to the surface
we can hope for with the minimal number of degrees of
freedom, and it is a second-order accurate approximation
of the normal, we eliminate one degree of freedom for the
normal by requiring it to be perpendicular to the edge. The
remaining degree of freedom can be represented in a natural
way by measuring angular deflection from the average
normal of two adjacent triangles. Thus we introduce an
extra angular variable for each edge. The mean curvature
estimate in this case is quite similar to (16):

Hyn(T) =

/) (1 £ 00) + 1 ) + (% £ 40)
(19)

where ; are angular variables associated with edges and
the plus or minus sign for each term is chosen according to
an arbitrary fixed choice of positive direction for ; for each
edge. We see that in this case additional variables can be
regarded as corrections to the curvature estimates for each
triangle edge.

Once this expression is linearized, it is possible to make
a simple change of variables which results in elimination of
dependence of the linearized energy on the points outside
the triangle: the only degrees of freedom involved are the
midpoint rotations and corners of the triangle itself, so
we obtain a simple finite element for plates. The element
obtained in this way is called the Morley element [13,
24], and is known to satisfy the patch test. Thus quite
remarkably, it proves to be possible to obtain an element
satisfying both conditions, with only six degrees of freedom
per element in the linear case, if we introduce midpoint
rotations.

Of course, this increases the total number of degrees
of freedom for the mesh: assuming simple mesh topology,
the number of edges is three times larger than the number
of vertices; as there are 3 positional degrees of freedom
for each vertex the total number of degrees of freedom
approximately doubles. However, this appears to be one of
the simplest possible discrete energies satisfying conditions
C1 and C2 at the same time.

5. Conclusions

We conclude with several remarks on possible ways of
applying the conditions on discrete energy functionals and
how these conditions can be extended to other types of
functionals. Violations of conditions C1 and C2 need to
be considered in the context of a specific application. The
absence of convergence in the limit for general meshes
does not render a functional useless. For fixed-resolution
computations on coarse meshes, interactive simulation or
fairing of control meshes for splines or subdivision surfaces,
convergent functionals may actually yield higher errors.
The extent to which conditions C1 and C2 are violated for a
given type of triangles (e.g. with an upper bound on aspect

ratio) can be used to estimate how far the solution energy
may deviate from the continuum, and to what extent the
energy is mesh-dependent. For example, one can observe
(Figure 1) that for a quadric the maximum error for the
one-dimensional functional with incorrect weights for local
curvature estimates does not exceed 1.5%. This suggests
that the same is true for any polygonal line, so if this error
is acceptable, the functional is likely to be adequate for an
application not requiring higher precision.

On the other hand, adaptive resolution computations
may require a convergent method, as otherwise increasing
resolution does not result in decreased errors; the mesh-
dependent nature of the discrete functional makes it difficult
to relate results for different meshes. Convergence may
be essential if the surface is defined as a solution of
a continuous energy minimization problem; in this case,
using convergent approximations is the only way to obtain
the true surface.

It is possible to extend geometric and convergence con-
ditions to other types of functionals, using the same princi-
ples. The geometric invariance and scaling of the discrete
functional should match that of the continuum functional.
For convergence, one can consider action on explicit solu-
tions of the linearized problem (typically the ones that keep
the integrand constant) to obtain conditions on linearized
discrete energy.

Finally, recent work [4] and the midpoint normal energy
briefly described here, suggest that for general meshes using
additional degrees of freedom, corresponding to higher-
order continuous quantities (normals, curvatures etc), may
lead to efficient and accurate discrete energy functionals for
arbitrary meshes.
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