
1

© 2001, Denis Zorin

Ray casting

© 2001, Denis Zorin

Ray casting/ray tracing

Iterate over pixels, not objects.
Effects that are difficult with Z-buffer, are easy with

ray tracing: shadows, reflections, transparency,
procedural textures and objects.

Assume image plane is placed in the virtual space
(e.g. front plane of the viewing frustum).

Algorithm:
for each pixel

shoot a ray r from the camera to the pixel
intersect with every object
find closest intersection

2

© 2001, Denis Zorin

Ray tracing

For each pixel shoot a ray R from camera;
pixel = TraceRay(R)

RGBvalue TraceRay(Ray R)
shoot rays to all light sources;
for all visible sources, compute RGB values ri
shoot reflected ray Rrefl; rrefl=TraceRay(Rrefl)
shoot refracted ray Rtrans;rtrans= TraceRay(Rtrans)
compute resulting RGB value from
ri, rrefl, rtrans using the lighting model

The recursive ray tracing procedure:

© 2001, Denis Zorin

Some primitives

Finite primitives:
polygons
spheres, cylinders, cones
parts of general quadrics

Infinite primitives:
planes
infinite cylinders and cones
general quadrics

A finite primitive is often an intersection of an
infinite with an area of space

3

© 2001, Denis Zorin

Intersecting rays with objects

General approach:
Use whenever possible the implicit equation F(q) =

0 of the object or object parts. Use parametric
equation of the line of the ray, q = p+vt.

Solve the equation F(p+vt) = 0 to find possible
values of t. Find the minimal nonnegative value
of t to get the intersection point (checking that t
is nonegative is important: we want intersections
with the ray starting from p, not with the whole
line!

© 2001, Denis Zorin

Intersecting a line and a plane

Same old trick: use the parametric equation for the
line, implicit for the plane. In the case of a pixel
ray, b = p(i,j)-c

n

pqi

c b

0)n)pbtc((i =⋅−+

)nb(
)n)pc((ti

⋅
⋅−

−=
Check for zero in the denominator;
ti should be positive for the
intersection to be in front of the
camera.

4

© 2001, Denis Zorin

Intersecting a ray with a sphere

Sphere equation: (q-c)2 – r2 = 0
For a ray q = p+ vt, we get ((p-c) + vt) 2 – r2 = 0
(p-c)2 + 2(p-c)·v t + v2 +t2 – r2 = 0
This quadratic equation in t may have no solutions
(no intersection) or two (possibly coinciding)
solutions (entry and exit points).
The correct point to return is the one that is
closest to ray origin.

© 2001, Denis Zorin

General quadrics

A general quadric has equation
Ax2 + By2 + Cz2 + Dxy + Eyz + Fxz + Gx + Hy +Iz + J

=0
Intersections with general quadrics are computed in

a way similar to cones and cylinders: for a ray p+
v t, take x = px + vx t, y = py + vy t, y = pz + vzt,

and solve the equation for t; if there are solutions,
take the smaller nonnegative one.
Infinite cones and cylinders are special cases of

general quadrics.

5

© 2001, Denis Zorin

General quadrics

Ellipsoid
x2/a2+ y2/b2 + z2/c2 + 1= 0

Nondegenerate quadrics

One-sheet hyperboloid
x2/a2- y2/b2 + z2/c2 + 1= 0

Two-sheet hyperboloid
x2/a2 - y2/b2 + z2/c2 - 1= 0

© 2001, Denis Zorin

General quadrics

Nondegenerate quadrics

Hyperbolic parabolid
x2/a2- z2/c2 - 2y= 0

Elliptic parabolid
x2/a2+ z2/c2 - 2y= 0

cone
x2/a2- y2/b2 + z2/c2 = 0

6

© 2001, Denis Zorin

General quadrics

Degenerate quadrics
planes (no quadratic terms),
pairs of parallel planes (e.g. x2 - 1 = 0)
pairs of intersecting planes (e.g. x2-1 = 0)
elliptic cylinders (e.g. x2+z2-1=0)
hyperbolic cylinders (e.g. x2-z2-1=0)
parabolic cylinders (e.g. x2 -z = 0)

Possible to get “imaginary” surfaces (that is, with
no points)! Example: x2 + 1 = 0

© 2001, Denis Zorin

Polygon-ray intersections

Two steps:
intersect with the plane of the polygon
check if the intersection point is inside the
polygon

We know how to compute intersections with the
plane (see prev. lecture). Let q=[qx,qy,qz] be the
intersection point.

q

7

© 2001, Denis Zorin

Polygon-ray intersections

Possible to do the whole calculation using 3d
points, but it is more efficient to use 2d points.

Converting to the coordinates in the plane is
computationally expensive. Idea: project to a
coordinate plane (XY, YZ, or XZ) by discarding
one of the vector coordinates.

We cannot always discard, say, Z, because the
polygon may project to an interval, if it is in a
plane parallel to Z.

Choose the coordinate to discard so that the
corresponding component of the normal to the
polygon is maximal. E.g. if nx > ny and nx > nz,
discard X.

© 2001, Denis Zorin

2D Polygon-ray intersections

Now we can assume that all vertices vi and the
intersection point q are 2D points.

q

v1

v2

v3

v4

Assume that polygons
are convex. A convex polygon
is the intersection of a set of
half-planes, bounded by the
lines along the polygon edges.
To be inside the polygon the
point has to be in each
half-plane. Recall that the
implicit line equation can be
used to check on which side of
the line a point is.

8

© 2001, Denis Zorin

2D Polygon-ray intersections

Equation of the line through the edge connecting
vertices vi and vi+1:

If the quantity on the right-hand side is positive,
then the point (x,y) is to the right of the edge,
assuming we are looking from vi to vi+1.

Algorithm: if for each edge the quantity above is
nonnegative for x = qx, y = qy then the point q is
in the polygon. Otherwise, it is not.

In the formulas x and y should be replaced by x and
z if y coord. was dropped, or by y and z if x was
dropped.

() () 011 =−−+−− ++)vy(vv)vx(vv y
i

x
i

x
i

x
i

y
i

y
i

© 2001, Denis Zorin

Infinite cylinder-ray intersections

Infinite cylinder along y of
radius r axis has equation
x2 + z2 - r2 = 0.
The equation for a more general
cylinder of radius r oriented along
a line pa + vat:
(q - pa - (va

. (q – pa)) va)2 - r2 = 0
where q = (x,y,z) is a point on the
cylinder.

r

pa

va

9

© 2001, Denis Zorin

Infinite cylinder-ray intersections

To find intersection points with a ray p + vt,
substitute q = p + vt and solve:

(p - pa + vt - (va
. (p - pa + vt))va)2 - r2 = 0

reduces to
with

where Δp = p- pa

02 =++ CBtAt

()
()
() 22

aa

aaaa

2
aa

rv)vp(pC

)v)vp(p()v)vv(v(2B
v)vv(vA

−⋅Δ−Δ=

⋅Δ−Δ⋅⋅−=

⋅−=

© 2001, Denis Zorin

Cylinder caps

A finite cylinder with caps can be constructed as the
intersection of an infinite cylinder with a slab between
two parallel planes, which are perpendicular to the
axis.

To intersect a ray with a cylinder with caps:
intersect with the infinite cylidner;
check if the intersection is between the planes;
intersect with each plane;
determine if the intersections are inside caps;
out of all intersections choose the on with minimal
t

10

© 2001, Denis Zorin

Cylinder-ray intersections

POV -ray like cylinder with caps : cap centers at p1
and p2, radius r.

Infinite cylinder equation: pa = p1, va = (p2- p1)/| p2- p1|
The finite cylinder (without caps) is described by

equations:
(q - pa - (va

. (q – pa))va)2 - r2 = 0 and (va
. (q- p1)) > 0

and
(va

. (q- p2)) < 0
The equations for caps are:
(va

. (q- p1)) = 0, (q- p1)2 < r2 bottom cap
(va

. (q- p2)) = 0, (q- p2)2 < r2 top cap

p2
r

p1

© 2001, Denis Zorin

Cylinder-ray intersections

Algorithm with equations:
Step 1: Find solutions t1 and t2 of At2 + Bt + C = 0
if they exist. Mark as intersection candidates the

one(s) that are nonnegative and for which (va
. (

qi- p1)) > 0 and (va
. (qi- p2)) < 0, where

qi=p+v ti

Step 2: Compute t3 and t4, the parameter values for
which the ray intersects the upper and lower
planes of the caps.
If these intersections exists, mark as intersection
candidates those that are nonegative and
(q3 - p1)2 < r2 (respectively (q4 - p2)2 < r2).

In the set of candidates, pick the one with min. t.

11

© 2001, Denis Zorin

Pixel rays
Goal: Find direction of the ray to the center of the
pixel (i,j). Let camera parameters be

c position
α horizontal field of view
v viewing direction
u up direction
s aspect ration

Then the image half-width in the
“virtual world” units is

The half-height is

u

v

α

v
View from

above
2
αtgnw = n

w

2
αtgsnh =

© 2001, Denis Zorin

Pixel rays
From coordinates in pixel units to virtual world
coordinates in image plane:

Pixel center of pixel (i,j)
in pixel coords

⎟
⎠
⎞

⎜
⎝
⎛ ++

2
1

2
1 j,i2

1
+j

2
1

+i

w

pixels
pixels

N

Pixel size:

M
h

N
w 22

×

Displacements of the pixel from the image center
in virtual space units:

w
N
wi,

M
hjh −⎟

⎠
⎞

⎜
⎝
⎛ +⎟

⎠
⎞

⎜
⎝
⎛ +−

2
2
12

2
1

12

© 2001, Denis Zorin

Pixel rays

u

v

uv ×

Virtual world coordinates of pixel (i,j):
image center + displacements.

Image center: c + vn

uvw
N
wiu

M
hjh

vnc)j,i(pixel

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛ ++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +−

++=

2
2
12

2
1

© 2001, Denis Zorin

Snell’s law

If a surface separates two media with different
refraction indices (e.g. air and water) the light
rays change direction when they go through.

Snell’s law: the refracted ray is stays in the plane
spanned by the normal and the direction of the
original ray. The angles between the normal and
the rays are related by
where n1 and n2 are refraction
indices.

n1 sin θ1 = n2 sin θ2

normalθ1

θ2

13

© 2001, Denis Zorin

Snell’s law

If a surface separates two media with different
refraction indices (e.g. air and water) the light
rays change direction when they go through.

Snell’s law: the refracted ray is stays in the plane
spanned by the normal and the direction of the
original ray. The angles between the normal and
the rays are related by
where n1 and n2 are refraction
indices.

n1 sin θ1 = n2 sin θ2

normalθ1

θ2

© 2001, Denis Zorin

Refracted ray direction

V

T

N

T = −nV+
³
n(V,N)−

p
1− n2(1− (V,N)2)

´
N

n1

n =
n1
n2n2

. .

