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Ray casting
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Ray casting/ray tracing

Iterate over pixels, not objects.
Effects that are difficult with Z-buffer, are easy with 

ray tracing: shadows,  reflections, transparency, 
procedural textures and objects.

Assume image plane is placed in the virtual space
(e.g. front plane of the viewing frustum).

Algorithm:
for each pixel

shoot a ray r from the camera to the pixel
intersect with every object
find closest intersection
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Ray tracing

For each pixel shoot a ray R from camera; 
pixel = TraceRay(R)

RGBvalue TraceRay(Ray R)
shoot rays to all light sources;
for all visible sources, compute RGB values ri
shoot reflected ray Rrefl; rrefl=TraceRay(Rrefl)
shoot refracted ray Rtrans;rtrans= TraceRay(Rtrans)
compute resulting RGB value from 
ri, rrefl, rtrans using the lighting model

The recursive ray tracing procedure:
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Some primitives

Finite primitives:
polygons
spheres, cylinders, cones
parts  of general quadrics

Infinite  primitives:
planes
infinite cylinders and cones
general quadrics

A finite primitive  is often an intersection of an 
infinite with an area of space
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Intersecting rays with objects

General approach: 
Use whenever possible  the implicit equation F(q) = 

0 of the object or object parts. Use parametric 
equation of the line of the ray, q = p+vt.

Solve the equation F(p+vt) = 0 to find possible 
values of t.  Find the minimal nonnegative value 
of t to  get the intersection point (checking that t 
is nonegative is important: we want intersections 
with the ray starting from p, not with the whole 
line!
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Intersecting a line and a  plane

Same old trick:  use the parametric equation for the 
line, implicit for the plane. In the case of a pixel 
ray, b = p(i,j)-c

n

pqi

c b

0)n)pbtc(( i =⋅−+

)nb(
)n)pc((ti

⋅
⋅−

−=
Check for zero in the denominator;
ti should be positive for the 
intersection to be in front of the
camera.
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Intersecting a ray with a sphere

Sphere equation: (q-c)2 – r2  = 0
For a ray q = p+ vt,  we get  ((p-c) + vt) 2 – r2 = 0
(p-c)2 + 2(p-c)·v t + v2 +t2 – r2 = 0
This quadratic equation in t may have no solutions
(no intersection) or two (possibly coinciding)
solutions (entry and exit points). 
The correct point to return is the one that is 
closest to ray origin.
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General quadrics

A general quadric has equation 
Ax2 + By2 + Cz2 + Dxy + Eyz + Fxz + Gx + Hy +Iz + J 

=0
Intersections with general quadrics are computed in 

a way similar to cones and cylinders: for a ray p+ 
v t, take x = px + vx t, y = py + vy t, y = pz + vzt,

and solve the equation for t; if there are solutions, 
take the smaller nonnegative one.
Infinite cones and cylinders are special cases of 

general quadrics.  
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General quadrics

Ellipsoid
x2/a2+ y2/b2 + z2/c2 + 1= 0

Nondegenerate quadrics

One-sheet hyperboloid
x2/a2- y2/b2 + z2/c2 + 1= 0

Two-sheet hyperboloid
x2/a2 - y2/b2 + z2/c2 - 1= 0
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General quadrics

Nondegenerate quadrics

Hyperbolic parabolid
x2/a2- z2/c2 - 2y= 0

Elliptic parabolid
x2/a2+ z2/c2 - 2y= 0

cone
x2/a2- y2/b2 + z2/c2 = 0
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General quadrics

Degenerate quadrics
planes (no quadratic terms), 
pairs of parallel planes (e.g. x2 - 1 = 0)
pairs of intersecting planes ( e.g. x2-1 = 0)
elliptic cylinders (e.g. x2+z2-1=0)
hyperbolic cylinders (e.g. x2-z2-1=0)
parabolic cylinders (e.g. x2 -z = 0)

Possible to get “imaginary” surfaces (that is, with 
no points)!   Example: x2 + 1 = 0
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Polygon-ray intersections

Two steps:
intersect with the plane of the polygon
check if the intersection point is inside the 
polygon

We know how to compute intersections with the 
plane (see prev. lecture).  Let q=[qx,qy,qz] be the 
intersection point.

q
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Polygon-ray intersections

Possible to do the whole calculation using 3d 
points, but it is more efficient to use 2d points.  

Converting to the coordinates in the plane is 
computationally expensive. Idea: project to a 
coordinate plane (XY, YZ, or XZ) by discarding 
one of the vector coordinates.

We cannot always discard, say, Z, because the 
polygon may project to an interval, if it is in a 
plane parallel to Z. 

Choose the coordinate to discard so that the 
corresponding component of the normal  to the 
polygon is maximal. E.g. if nx > ny and nx > nz,
discard X.
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2D Polygon-ray intersections

Now we can assume that all vertices vi and the 
intersection point q are 2D points.

q

v1

v2

v3

v4

Assume that polygons 
are convex. A convex polygon
is the intersection of a set of 
half-planes, bounded by the 
lines along the polygon edges.
To be inside the polygon the 
point has to be in each 
half-plane.  Recall that the 
implicit line equation can be 
used to check on which side of 
the line a point is.
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2D Polygon-ray intersections

Equation of the line through the edge connecting  
vertices vi and vi+1:

If the quantity on the right-hand side is positive, 
then the point (x,y) is to the right of the edge, 
assuming we are looking from vi to vi+1.

Algorithm: if for each edge the quantity above is 
nonnegative for x = qx, y = qy then the point q is 
in the polygon. Otherwise, it is not.

In the formulas x and y should be replaced by x and 
z if y coord. was dropped, or by y and z if x was 
dropped.
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Infinite cylinder-ray intersections

Infinite cylinder along y  of 
radius r axis has  equation 
x2 + z2 - r2 = 0.
The equation for a more general 
cylinder of radius r  oriented along 
a line pa + vat: 
(q - pa - (va

. (q – pa) ) va)2  - r2  = 0
where q = (x,y,z) is a point on the
cylinder.

r

pa

va
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Infinite cylinder-ray intersections

To  find intersection points with a ray p + vt, 
substitute q = p + vt and solve:

(p - pa + vt - (va
. (p - pa + vt))va)2  - r2  = 0

reduces to
with

where Δp = p- pa 
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Cylinder caps

A finite cylinder with caps can be constructed as the 
intersection of an infinite cylinder with a slab between 
two parallel planes, which are perpendicular to the 
axis.

To intersect a ray with a cylinder with caps:
intersect with the infinite cylidner;
check if the intersection is between the planes;
intersect with each plane;
determine if the intersections are inside caps;
out of all intersections choose the on with minimal 
t
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Cylinder-ray intersections

POV -ray like cylinder with caps : cap centers at p1 
and p2, radius r.

Infinite cylinder equation: pa = p1, va = (p2- p1)/| p2- p1|
The finite cylinder (without caps) is described by 

equations: 
(q - pa - (va

. ( q – pa))va)2  - r2  = 0 and (va
. ( q- p1)) > 0 

and
(va

. (q- p2)) < 0
The equations for caps are:
(va

. ( q- p1)) = 0, (q- p1)2 < r2 bottom cap
(va

. ( q- p2)) = 0, (q- p2)2 < r2 top cap

p2
r

p1
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Cylinder-ray intersections

Algorithm with equations:
Step 1: Find  solutions t1 and t2 of At2 + Bt + C = 0
if they exist.  Mark as intersection candidates the 

one(s) that are nonnegative and for which (va
. ( 

qi- p1)) > 0 and (va
. ( qi- p2)) < 0, where 

qi=p+v ti

Step 2: Compute t3 and t4, the parameter values for 
which the ray intersects the upper and lower 
planes of  the caps.
If these intersections exists, mark as intersection 
candidates those that are nonegative and 
(q3 - p1)2 < r2 (respectively (q4 - p2)2 < r2 ).

In the set of candidates, pick the one with min. t.
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Pixel rays
Goal: Find direction of the ray to the center of the 
pixel (i,j). Let camera parameters be

c position 
α horizontal field of view 
v viewing direction 
u up direction 
s aspect ration

Then the image half-width in the
“virtual world” units is

The half-height is

u

v

α

v
View from

above
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Pixel rays
From coordinates in pixel units  to virtual world 
coordinates in image plane:

Pixel center of pixel (i,j) 
in pixel coords
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Pixel rays

u

v

uv ×

Virtual world coordinates of pixel (i,j):
image center + displacements.

Image center: c + vn
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Snell’s law

If a surface separates two media with different 
refraction indices (e.g.  air and water) the light
rays change direction when they go through.

Snell’s law: the refracted ray is stays in the plane 
spanned by the normal and the direction of the
original ray. The angles between the normal and 
the rays are related by                                         
where n1 and n2 are refraction
indices.

n1 sin θ1 = n2 sin θ2

normalθ1

θ2
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Refracted ray direction
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