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Chapter 1

Introduction

Twenty years ago the publication of the papers by Catmull and Clark [2] and Doo and Sabin [3] marked
the beginning of subdivision for surface modeling. This year, another milestone occurred when subdivi-
sion hit the big screen in Pixar’s short “Geri's Game,” for which Pixar received an Academy award for
“Best Animated Short Film.” The basic ideas behind subdivision are very old indeed and can be traced
as far back as the late 40s and early 50s when G. de Rham used “corner cutting” to describe smooth
curves. It was only recently though that subdivision surfaces have found their way into wide application
in computer graphics and computer assisted geometric design (CAGD). One reason for this develop-
ment is the importance of multiresolution techniques to address the challenges of ever larger and more
complex geometry: subdivision is intricately linked to multiresolution and traditional mathematical tools
such as wavelets.

Constructing surfaces through subdivision elegantly addresses many issues that computer graphics
practitioners are confronted with

e Arbitrary Topology: Subdivision generalizes classical spline patch approaches to arbitrary topol-
ogy. This implies that there is no need for trim curves or awkward constraint management between
patches.

e Scalability: Because of its recursive structure, subdivision naturally accommodates level-of-detail
rendering and adaptive approximation with error bounds. The result are algorithms which can
make the best of limited hardware resources, such as those found on low end PCs.

e Uniformity of Representation: Much of traditional modeling uses either polygonal meshes or
spline patches. Subdivision spans the spectrum between these two extremes. Surfaces can behave
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as if they are made of patches, or they can be treated as if consisting of many small polygons.

e Numerical Stability: The meshes produced by subdivision have many of the nice properties fi-
nite element solvers require. As a result subdivision representations are also highly suitable for
many numerical simulation tasks which are of importance in engineering and computer animation
settings.

e Code Simplicity: Last but not least the basic ideas behind subdivision are simple to implement and
execute very efficiently. While some of the deeper mathematical analyses can get quite involved
this is of little concern for the final implementation and runtime performance.

In this course and its accompanying notes we hope to convince you, the reader, that in fact the above
claims are true!

The main focus or our notes will be on covering the basic principles behind subdivision; how subdivi-
sion rules are constructed; to indicate how their analysis is approached; and, most importantly, to address
some of the practical issues in turning these ideas and techniques into real applications.

The following 2 chapters will be devoted to understanding the basic principles. We begin with some
examples in the curve, i.e., 1D setting. This simplifies the exposition considerably, but still allows us to
introduce all the basic ideas which are equally applicable in the surface setting. Proceeding to the surface
setting we cover a variety of different subdivision schemes and their properties.

With these basics in place we proceed to the second, applications oriented part, covering algorithms
and implementations addressing

e Interactive Multiresolution Mesh Editing: This section discusses many of the data structure
and algorithmic issues which need to be addressed to realize high performance. The result is a
system which allows for interactive, multiresolution editing of fairly complex geometry on PC
class machines with little hardware graphics support.

e Subdivision Surfaces and WaveletsThis section shows how subdivision is the key element in
generalizing the traditional wavelet machinery to arbitrary topology surfaces. The result are a
class of algorithms which open up applications such as compression for subdivision surfaces, for
example.

e A Variational Approach to Subdivision: Most subdivision methods are stationary, i.e., they use a
fixed set of rules. They are generally designed to exhibit some order of differentiability. In practice
it is often much more important to consider the fairness of the resulting surfaces. Variational
subdivision incorporates fairness measures into the subdivision process.
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e Exploiting Subdivision in Modeling and Animation: One reason subdivision is becoming very
popular is that it supports hierarchical editing and animation semantics. This was discovered
originally in the traditional spline setup and lead to the development of hierarchical splines. From
that technique it is only a small step to multiresolution modeling using subdivision. This section
discusses some of the issues in controlling animation hierarchically.

e Subdivision Surfaces in the Making of Geri's Game: This section discusses how subdivision
surfaces successfully address the needs of very high end production environments. in the process
new technigues had to be developed which are detailed in this part of the notes.

Beyond these Notes

One of the reasons that subdivision is enjoying so much interest right now is that it is very easy to
implement and very efficient. In fact it is used in many computer graphics courses at universities as a
homework exercise. The mathematical theory behind it is very beautiful, but also very subtle and at times
technical. We are not treating the mathematical details in these notes, which are primarily intended for
the computer graphics practitioners. However, for those interested in the theory there are many pointers
to the literature.

These notes as well as other materials such as presentation slides, applets and snippets of code are
available on the web &itp://www.multires.caltech.edu/teaching/courses/subdivision/
and all readers are encouraged to explore the online resources. A repository of additional information
beyond this course is maintainedtatp://www.mrl.nyu.edu/dzorin/subdivision
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Chapter 2

Foundations I: Basic Ideas

In this chapter we focus on the 1D case to introduce all the basic ideas and concepts before going
on to the 2D setting. Examples will be used throughout to motivate these ideas and concepts. We
begin initially with an example from interpolating subdivision, before talking about splines and their
subdivision generalizations.

LOUL

Figure 2.1: Example of subdivision for curves in the plane. On the left 4 points connected with straight
line segments. To the right of it a refined version: 3 new points have been inserted “inbetween” the old
points and again a piecewise linear curve connecting them is drawn. After two more steps of subdivision
the curve starts to become rather smooth.

2.1 The ldea of Subdivision

We can summarize the basic idea of subdivision as follows:
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Subdivision defines a smooth curve or surface as the limit of a sequence of successive re-

finements.

Of course this is a rather loose description with many details as yet undetermined, but it captures the
essence.

Figure 2.1 shows an example in the case of a curve connecting some number of initial points in the
plane. On the left we begin with 4 points connected through straight line segments. Next to it is a refined
version. This time we have the original 4 points and additionally 3 more points “inbetween” the old
points. Repeating the process we get a smoother looking piecewise linear curve. Repeating once more
the curve starts to look quite nice already. It is easy to see that after a few more steps of this procedure
the resulting curve would be as well resolved as one could hope when using finite resolution such as that

offered by a computer monitor or a laser printer.
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Figure 2.2: Example of subdivision for a surface, showing 3 successive levels of refinement. On the left
an initial triangular mesh approximating the surface. Each triangle is split into 4 according to a particular
subdivision rule (middle). On the right the mesh is subdivided in this fashion once again.

An example of subdivision for surfaces is shown in Figure 2.2. In this case each triangle in the original
mesh on the left is split into 4 new triangles quadrupling the number of triangles in the mesh. Applying
the same subdivision rule once again gives the mesh on the right.
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Both of these examples show what is known as interpolating subdivision. The original points remain
undisturbed while new points are inserted. We will see below that splines, which are generally not
interpolating, can also be generated through subdivision. Albeit in that case new points are arseérted
old points are moved in each step of subdivision.

How were the new points determined? One could imagine many ways to decide where the new points
should go. Clearly, the shape and smoothness of the resulting curve or surface depends on the chosen
rule. Here we list a number of properties that we might look for in such rules:

¢ Efficiency: the location of new points should be computed with a small number of floating point
operations;

e Compact support: the region over which a point influences the shape of the final curve or surface
should be small and finite;

e Local definition: the rules used to determine where new points go should not depend on “far
away” places;

e Affine invariance: if the original set of points is transformed, e.g., translated, scaled, or rotated,
the resulting shape should undergo the same transformation;

e Simplicity: determining the rules themselves should preferably be an offline process and there
should only be a small number of rules;

e Continuity: what kind of properties can we prove about the resulting curves and surfaces, for
example, are they differentiable?

For example, the rule used to construct the curve in Figure 2.1 computed new points by taking a weighted
average of nearby old points: two to the left and two to the right with weight§®-1,9,9, —1) respec-
tively (we are ignoring the boundaries for the moment). It is very efficient since it only involves 4
multiplies and 3 adds (per coordinate); has compact support since only 2 neighbors on either side are
involved; its definition is local since the weights do not depend on anything in the arrangement of the
points; the rule is affinely invariant since the weights used sum to 1; it is very simple since only 1 rule is
used (there is one more rule if one wants to account for the boundaries); finally the limit curves one gets
by repeating this process ad infinitum &re

Before delving into the details of how these rules are derived we quickly compare subdivision to other
possible modeling approaches for smooth surfaces: traditional splines, implicit surfaces, and variational
surfaces.
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1. Efficiency: Computational cost is an important aspect of a modeling method. Subdivision is
easy to implement and is computationally efficient. Only a small number of neighboring old
points are used in the computation of the new points. This is similar to knot insertion methods
found in spline modeling, and in fact many subdivision methods are simply generalization of knot
insertion. On the other hand implicit surfaces, for example, are much more costly. An algorithm
such as marching cubes is required to generate the polygonal approximation needed for rendering.
Variational surfaces can be even worse: a global optimization problem has to be solved each time
the surface is changed.

2. Arbitrary topology: Itis desirable to build surfaces of arbitrary topology. This is a great strength
of implicit modeling methods. They can even deal witimngingtopology during a modeling
session. Classic spline approaches on the other hand have great difficulty with control meshes of
arbitrary topology. Here, “arbitrary topology” captures two properties. First, the topological genus
of the mesh and associated surface can be arbitrary. Second, the structure of the graph formed by
the edges and vertices of the mesh can be arbitrary; specifically, each vertex may be of arbitrary
degree.

These last two aspects are related: for example, any control mesh for a sphere (topological genus
0) necessarily has vertices of different degrees. Only closed surfaces of genus 1 can be represented
using a mesh with all vertices having the same degree.

When rectangular spline patches are used in arbitrary control meshes, enforcing higher order con-
tinuity at extraordinary vertices becomes difficult and considerably increases the complexity of the
representation (see Figure 2.3 for an example of points not having valence 4). Implicit surfaces
can be of arbitrary topological genus, but the genus, precise location, and connectivity of a surface
are typically difficult to control. Variational surfaces can handle arbitrary topology better than
any other representation, but the computational cost can be high. Subdivision can handle arbitrary
topology quite well without losing efficiency; this is one of its key advantages. Historically sub-
division arose when researchers were looking for ways to address the arbitrary topology modeling
challenge for splines.

3. Surface features: Often it is desirable to control the shape and size of features, such as creases,
grooves, or sharp edges. Variational surfaces provide the most flexibility and exact control for cre-
ating features. Implicit surfaces, on the other hand, are very difficult to control, since all modeling
is performed indirectly and there is much potential for undesirable interactions between different
parts of the surface. Spline surfaces allow very precise control, but it is computationally expen-
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Figure 2.3: A mesh with two extraordinary vertices, one with valence 6 the other with valence 3. In
the case of quadrilateral patches the standard valence is 4. Special efforts are required to guarantee high
order of continuity between spline patches meeting at the extraordinary points; subdivision handles such
situations in a natural way.

sive and awkward to incorporate features, in particular if one wants to do so in arbitrary locations.
Subdivision allows more flexible controls than is possible with splines. In addition to choosing
locations of control points, one can manipulate the coefficients of subdivision to achieve effects
such as sharp creases or control the behavior of the boundary curves.

4. Complex geometry: For interactive applications, efficiency is of paramount importance. Because
subdivision is based on repeated refinement it is very straightforward to incorporate ideas such
as level-of-detail rendering and compression for the internet. During interactive editing locally
adaptive subdivision can generate just enough refinement based on geometric criteria, for example.
For applications that only require the visualization of fixed geometry, other representations, such
as progressive meshes, are likely to be more suitable.

Since most subdivision techniques used today are based upon and generalize splines we begin with
a quick review of some basic facts of splines which we will need to understand the connection between
splines and subdivision.
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2.2 Review of Splines

2.2.1 Piecewise Polynomial Curves

Splines are piecewise polynomial curves of some chosen degree. In the case of cubic splines, for exam-
ple, each polynomial segment of the curve can be written as

x(t) = atP+at>+ajt+ay

y(t) = b5t +bht? + bt + b,
where(a,b) are constant coefficients which control the shape of the curve over the associated segment.

This representation uses monomia t¢,t1,t%), which are restricted to the given segment, as basis
functions.

1.0+

-0.5 T T T T T T T |

Figure 2.4: Graph of the cubic B-spline. It is zero for the independent parameter outside the interval
[_2? 2]

Typically one wants the curve to have some order of continuity along its entire length. In the case of
cubic splines one would typically wa@f continuity. This places constraints on the coefficiefas)
of neighboring curve segments. Manipulating the shape of the desired curves through these coefficients,
while maintaining the constraints, is very awkward and difficult. Instead of using monomials as the basic
building blocks, we can write the spline curve as a linear combination of sti#ftsplines each with a
coefficient known as aontrol point

X(t) = ZXiB(t— i)
yt) = > wiB(t—i).
The new basis functioB(t) is chosen in such a way that the resulting curves are always continuous and

that the influence of a control point is local. One way to ensure higher order continuity is to use basis
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functions which are differentiable of the appropriate order. Since polynomials themselves are inifinitely
smooth, we only have to make sure that derivatives match at the points where two polynomial segments
meet. The higher the degree of the polynomial, the more derivatives we are able to match. We also
want the influence of a control point to be maximal over a region of the curve which is close to the
control point. Its influence should decrease as we move away along the curve and disappear entirely at
some distance. Finally, we want the basis functions to be piecewise polynomial so that we can represent
any piecewise polynomial curve of a given degree with the associated basis functions. B-splines are
constructed to exactly satisfy these requirements (for a cubic B-spline see Figure 2.4) and in a moment
we will show how they are constructed.

The advantage of using this representation rather than the earlier one of monomials, is that the conti-
nuity conditions at the segment boundaries are already “hardwired” into the basis functions. No matter
how we move the control points, the spline curve will always maintain its continuity, for exa@ple,
the case of cubic B-splinésFurthermore, moving a control point has the greatest effect on the part of
the curve near that control point, and no effect whatsoever beyond a certain range. These features make
B-splines a much more appropriate tool for modeling piecewise polynomial curves.

Note: When we talk about curves, it is important to distinguish the curve itself and the graphs of the
coordinate functions of the curve, which can also be thought of as curves. For example, a curve can
be described by equationét) = sin(t), y(t) = coqt). The curve itself is a circle, but the coordinate
functions are sinusoids. For the moment, we are going to concentrate on representing the coordinate
functions.

2.2.2 Definition of B-Splines

There are many ways to derive B-splines. Here we choose repeated convolution, since we can see from
it directly how splines can be generated through subdivision.

We start with the simplest case: piecewise constant coordinate functions. Any piecewise constant
function can be written as

X(t) = 3 xBb(t),

IThe differentiability of the basis functions guarantees the differentiability of the coordinate functions of the curve. How-
ever, it does not guarantee the geometric smoothness of the curve. We will return to this distinction in our discussion of
subdivision surfaces.
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whereBy(t) is the box function defined as

Bot) = 1 if 0<t<1

= 0 otherwise

and the functiond}(t) = Bo(t — i) are translates do(t). Furthermore, let us represent the continuous
convolution of two functiond (t)andg(t) with

(fog)t) = [ f(9at—9ds

A B-spline basis function of degraecan be obtained by convolving the basis function of degreel
with the boxBo(t).2 For example, the B-spline of degree 1 is defined as the convoluti@g(bf with
itself

Ba(t) = / Bo(S)Bo(t — )ds

Graphically (see Figure 2.5), this convolution can be evaluated by sliding one box function along the
coordinate axis from minus to plus infinity while keeping the second box fixed. The value of the con-
volution for a given position of the moving box is the area under the product of the boxes, which is just
the length of the interval where both boxes are non-zero. At first the two boxes do not have common
support. Once the moving box reaches 0, there is a growing overlap between the supports of the graphs.
The value of the convolution grows withuntil t = 1. Then the overlap starts decreasing, and the value
of the convolution decreases down to zerb-at2. The functiorB(t) is the linear hat function as shown
in Figure 2.5.

We can compute the B-spline of degree 2 convolBa@ ) with the boxByp(t) again

Ba(t) / B1(S)Bo(t — S)ds

In this case, the resulting curve consists of three quadratic segments defined on if@etyal4, 2) and
(2,3). In general, by convolvingtimes, we can get a B-spline of degilee

Bi(t) = / Bi_1(S)Bo(t — s)ds

Defining B-splines in this way a number of important properties immediately follow. The first concerns
the continuity of splines

2Thedegreeof a polynomial is the highest order exponent which occurs, whilettier counts the number of coefficients
and is 1 larger. For example, a cubic curve is of degree 3 and order 4.
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1

Figure 2.5: The definition of degree 1 B-SpliBg(t) (right side) through convolution dp(t) with itself
(left side).

Theorem 1 If f (t) is Ck-continuous, theriBy ® f)(t) is C<1-continuous.

This is a direct consequence of convolution with a box function. From this it follows that the B-spline of
degreen is C"* continuous because the B-spline of degree@isontinuous.
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2.2.3 Refinability of B-splines

Another remarkable property of B-splines is that they obeyefinement equation This is the key
observation to connect splines and subdivision. The refinement equation for B-splines of Idisgree
given by

B (t lelf( >B|2t K). (2.1)

In other words, the B-spline of degréecan be written as a linear combination toedinslated (k) and

dilated (2t) copies of itself. For a function to be refineable in this way is a rather special property. As an
example of the above equation at work consider the hat function shown in Figure 2.5. It is easy to see that
it can be written as a linear combination of dilated hat functions with weidht& 1,1/2) respectively.

The property of refinability is the key to subdivision and so we will take a moment to prove it. We
start by observing that the box function, i.e., the B-spline of degree 0 can be written in terms of dilates
and translates of itself

Bo(t) = Bo(2t) + Bo(2t — 1), (2.2)

which is easily checked by direct inspection. Recall that we defined the B-spline of degree

|
B (1) = RBo(t) = (R)(Bo(2) + Bo(2t 1)) (2.3)

This expression can be “multiplied” out by using the following properties of convolution for functions
f(t), g(t), andh(t)

f)®(gt)+ht)) = ft)®g(t)+ f(t)Rh(t) linearity
ft—i)@glt—k) = mt—i—k) time shift
f(2)@g2t) = Im(2) time scaling

wherem(t) = f(t) ®g(t). These properties are easy to check by substituting the definition of convolution
and amount to simple change of variables in the integration.
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For example, in the case Bf we get
Bi(t) = Bo(t)®Bo(t)
= (Bo(2t) +Bo(2t — 1)) ® (Bo(2t) + Bo(2t — 1))
= Bo(zt) &® Bo(zt) + Bo(zt) (%9 Bo(zt — 1) + Bo(zt — 1) &® Bo(zt) + Bo(zt — 1) ® Bo(zt — 1)

_ %Bl(Zt) + %Bl(Zt 1)+ %Bl(Zt -+ %Bl(Zt -1-1)
_ %(Bl(Zt) +2B,(2t — 1) + By (2 — 2))

_ 2_11 éo (i) By(2t — K).

The general statement for B-splines of dedraew follows from the binomial theorem

(x+y) = Iil (I JIZ 1) X Ty

=)
with Bo(2t) in place ofx andBg(2t — 1) in place ofy.

2.2.4 Refinement for Spline Curves

With this machinery in hand let’s revisit spline curves. Let

(t) i
Vit = [ 0 ] = P8l

be such a spline curve of degrewith control points(x;,y;)T = pi € R2. Since we don't want to worry
about boundaries for now we leave the index setspecified. We will also drop the subscriggince the
degree, whatever it might be, is fixed for all our examples. Due to the definitiB)f= B(t —i) each
control point exerts influence over a small part of the curve with parameter vadugg +1].

Now considerp, the vector of control points of a given curve:

p-2
p-1

P1
P2
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and the vectoB(t), which has as its elements the translates of the fun&ias defined above
B(t)y=| ... B(t+2) B(t+1) B(t) B(t—1) B(t—2)

In this notation we can denote our curveBs($)p.
Using the refinement relation derived earlier, we can rewrite each of the elem@&his t#rms of its
dilates

B(zt)z[... B(2t+2) B(2t+1) B(2) B(2-1) B(2t—2) ]

using a matrixSto encode the refinement equations

The entries oS are given by Equation 2.1

1/1+1
52i+k,i=S<=§( K )

The only non-zero entries in each column are the weights of the refinement equation, while successive
columns are copies of one another save for a shift down by two rows.
We can use this relation to rewripét)

y(t) = B(t)p = B(2)Sp.

It is still the same curve, but desribed with respect to dilated B-splines, i.e., B-splines whose support is
half as wide and which are spaced twice as dense. We performed a change from the @&¢ pasibe

new basiB(2t) and concurrently changed the old control popt® the appropriate new control points

. This process can be repeated

yt) = Bp°
= B@p' = B
= B@upl = B@Sp,
from which we can define the relationship between control points at different levels of subdivision
pl*t =,
whereSis our infinite subdivision matrix.
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Looking more closely at one componentof our control points we see that
1 _
pl = ZSLI Pl

To find out exactly whicls is affecting which term, we can divide the above into odd and even entries.
For the odd entries we have

Ph = Zszm,l p = ZSZ(ifl)Jrl o
and for the even entries we have
it = ZSZU pl = ZSZ(i—I) pl.

From which we essentially get two different subdivision rules one for theevamcontrol points of the
curve and one for the nemdd control points. As examples of the above, let us consider a two concrete
cases. For piecewise linear subdivision, the basis functions are hat functions. The odd coeffici%nts are
and%, and a lone 1 for the even point. For cubic splines the odd coefficients turn ou%tarhi%, while
the even coefficients arg §, and3.

Another way to look at the distinction between even and odd is to notice that odd points gttelrel
are newly inserted, while even points at leyel 1 correspond directly to the old points from levjel
In the case of linear splines the even points are in facs#meat level j + 1 as they were at levgl.
Subdivision schemes that have this property will later be catiggtpolating since points, once they
have been computed, will never move again. In contrast to this consider cubic splines. In that case even
points at levelj + 1 are local averages of points at leyedo thatpii+1 #* p,J Schemes of this type will
later be callecapproximating

2.2.5 Subdivision for Spline Curves

In the previous section we saw that we can refine the control point sequence for a given spline by multi-
plying the control point vectop by the matrixS, which encodes the refinement equation for the B-spline
used in the definition of the curve. What happens if we keep repeating this process over and over, gen-
erating ever denser sets of control points? It turns out the control point sequence converges to the actual
spline curve. The speed of convergence is geometric, which is to say that the difference between the
curve and its control points decreases by a constant factor on every subdivision step. Loosely speaking
this means that the actual curve is hard to distinguish from the sequence of control points after only a
few subdivision steps.
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We can turn this last observation into an algorithm and the core of the subdivision paradigm. Instead
of drawing the curve itself on the screen we draw the control polygon, i.e., the piecewise linear curve
through the control points. Applying the subdivision matrix to the control points defines a sequence of
piecewise linear curves which quickly converge to the spline curve itself.

In order to make these observations more precise we need to introduce a little more machinery in the
next section.

2.3 Subdivision as Repeated Refinement

2.3.1 Discrete Convolution

The coefficientss, of the B-spline refinement equation can also be derived from another perspective,
namely discrete convolution. This approach mimics closely the definition of B-splines through continu-
ous convolution. Using this machinery we can derive and check many useful properties of subdivision
by looking at simple polynomials.

Recall that the generating function of a sequescis defined as

A(z) = Zakzk,

whereA(z) is the ztransform of the sequenag. This representation is closely related to the discrete
Fourier transform of a sequence by restricting the argumtmthe unit circlez= exp(i0). For the case
of two coefficient sequenceg andby their convolution is defined as

C=(a®b)k = ak-—nbn.
n
In terms of generating functions this can be stated succinctly as
C(2) = A(2)B(2),

which comes as no surprise since convolution in the time domain is multiplication in the Fourier domain.

The main advantage of generating functions, and the reason why we use them here, is that manip-
ulations of sequences can be turned into simple operations on the generating functions. A very useful
example of this is the next observation. Suppose we have two functions that each satisfy a refinement
equation

f(t) = Zakf(zt_k)
at) = Zbkg(Zt—k)-
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In that case the convolutidm= f ® g of f andg also satisfies a refinement equation
h(t) = ch h(2t — k),

whose coefficients? are given by the convolution of the coefficients of the individual refinement equa-
tions

Cc=75 > a-ibi.

|

With this little observation we can quickly find the refinement equation, and thus the coefficients of the
subdivision matrixS, by repeated multiplication of generating functions. Recall that the box function
Bo(t) satisfies the refinement equati@(t) = Bo(2t) + Bo(2t — 1). The generating function of this
refinement equation i&(z) = (1+ z) since the only non-zero terms of the refinement equation are those
belonging to indices 0 and 1. Now recall the definition of B-splines of deigree

NI =

Bi(t) = @) Bo(t),

k=0

from which we immediately get the associated generating function

S2)= 51+

The valuess used for the definition of the subdivision matrix are simply the coefficients of the various
powers ofzin the polynomialS(z)

1 I+1 |_|_1
so-33 ()~
where we used the binomial theorem to exp&(g). Note how this matches the definition §f in
Equation 2.1.

Recall Theorem 1, which we used to argue that B-splines of deggieaC" 1 continuous. That same
theorem can now be expressed in terms of generating functions as follows

Theorem 2 If S(z) defines a convergent subdivision scheme yieldin§-eddtinuous limit function then
(14 2)S(2) defines a convergent subdivision scheme with'@ontinuous limit functions.

We will put this theorem to work in analyzing a given subdivision scheme by peeling off as many fac-
tors of%(l+ z) as possible, while still being able to prove that the remainder converges to a continuous
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limit function. With this trick in hand all we have left to do is establish criteria for the convergence of
a subdivision scheme to a continuous function. Once we can verify such a condition for the subdivi-
sion scheme associated with B-spline control points we will be justified in drawing the piecewise linear
approximations of control polygons as approximations for the spline curve itself. We now turn to this
task.

2.3.2 Convergence of Subdivision

There are many ways to talk about the convergence of a sequence of functions to a limit. One can use
different norms and different notions of convergence. For our purposes the simplest form will suffice,
uniform convergence.
We say that a sequence of functiofiglefined on some intervéd, b] C R converges uniformlyo a
limit function f if for all € > 0 there exists ang > 0 such that for alh > ng
max |f(t) — fn(t)| <.
tefab]
Or in words, as of a certain indeRrg) all functions in the sequence “live” within ansized tube around
the limit function f. This form of convergence is sufficient for our purposes and it has the nice prop-
erty that if a sequence of continuous functions converges uniformly to some limit furfGtibiat limit
function is itself continuous.
For later use we introduce some norm symbols

fOl = sgplf(t)l
Ipll sup| pi|
|
S| = su ,
ISl = supy ISi

which are compatible in the sense that, for examifBe)| < ||S||||p||-

The sequence of functions we want to analyze now are the control polygons as we refine them with
the subdivision rules. Recall that the control polygon is the piecewise linear curve through the control
pointsp! at level j. Independent of the subdivision ruave can use the linear B-splines to define the
piecewise linear curve through the control point$ag) = B, (2/t)p!.

One way to show that a given subdivision scheB®nverges to a continuous limit function is to
prove that (1) the limit

P(t) = lim PI(t)

o
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exists for allt and (2) that the sequen@d(t) converges uniformly. In order to show this property we
need to make the assumption that all rows of the m&sxm to 1, i.e., the odd and even coefficients of
the refinement relation separately sum to 1. This is a reasonable requirement since it is needed to ensure
the affine invariance of the subdivision process, as we will later see. In matrix notation this 8ieats
or in other words, the vector of all 1’s is an eigenvector of the subdivision matrix with eigenvalue 1. In
terms of generating functions this me&{s-1) = 0, which is easily verified for the generating functions
we have seen so far.

Recall that the definition of continuity in the function setting is based on differences. WEt3ay
is continuous aty if for any € > 0 there exists & > 0 so that|f (tp) — f(t)| < € as long asty —t| < d.
The corresponding tool in the subdivision setting is the difference between two adjacent control points
pin — pij = (ApY)i. We will show that if the differences between neighboring control points shrink fast
enough, the limit curve will exist and be continuous:

Lemma 3 If ||Ap!|| < cy! for some constant & 0 and a shrinkage factod <y < 1 for all j > jo >0
then P (t) converges to a continuous limit functior ).

Proof: Let Sbe the subdivision rule at hang! = S° andS; be the subdivision rule for B-splines of
degree 1. Notice that the rows 8+ S, sumto 0
(S—S)1=Sl-§1=1-1=0.
This implies that there exists a matiix such thatS— S = DA, whereA computes the difference of
adjacent element&\);j = —1, (A)iji+1 = 1, and zero otherwise. The entriesfare given adj; =
— 2|J<:i (S—S)ik- Now consider the difference between two successive piecewise linear approximations
of the control points
P —PIt)| = [1Bu(2H)pl - By (2t)p]|

= [Bi(2" ) — B (2 )Sip] |

= [Bi(2"t)(S—s)p’||
)

< [IBL(2**)[|[DAR’||
< [IDllfap’|
< [IDlley'.
This implies that the telescoping sup(t) + 5} _, (P 1 —P¥)(t) converges to a well defined limit func-

tion P*(t) asj — oo and furthermore

1P — Pi)| < 12lCy,

1yy
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which implies uniform convergence and thus continuityP8ft) as claimed.
How do we check such a condition for a given subdivision scheme? Suppose we had a derived
subdivision schemP for the differences themselves

ApI*t =Dap),
defined as the scheme that satisfies
AS= DA.

Or in words, we are looking for difference scheme Buch that taking differences after subdivision is
the same as applying the difference scheme to the differences.Dal@gays exist? The answer is yes
if Sis affinely invariant, i.e.S(—1) = 0. This follows from the following argument. Multiplyin§ by A
computes a matrix whose rows are differences of adjacent ro&sSince odd and even numbered rows
of Seach sum to one, the rows A5 must each sum to zero. Now the existence of a m&irsuch that
AS= DA follows as in the argument above.

Given this difference scheni2 all we would have to show is that some power- O of D has norm
less than 1||D™|| =y < 1. In that casé/Ap!|| < c(y*'™)i. (We will see in a moment that the extra degree
of freedom provided by the parametailis needed in some cases.)

As an example, let us check this condition for cubic B-splines. RecalBi(@ = 3(1+2)%, i.e.,

bt = g(apl +anly)
pgrl = %(pij—l"i'Gpij + pij+1)~
Taking differences we have
@7 = Py —pht=g(-ply -2/ +30y)
= 5(3(pLa— By + 106] ) = (30T + 1B ),

and similarly for the odd entries so tHatz) = %(1+ 2)3, from which we conclude thaD|| = 1, and that
the subdivision scheme for cubic B-splines converges uniformly to a continuous limit function, namely
the B-spline itself.

Another example, which is not a spline, is the so called 4 point scheme [4]. It was used to create
the curve in Figure 2.1, which is interpolating rather than approximating as is the case with splines. The
generating function for the 4 point scheme is

S(z) = 1—16(—2’3 +4z72-7 Y1424
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Recall that each additional factor§)¢1+ z) in the generating function increases the order of continuity of
the subdivision scheme. If we want to show that the limit function of the 4 point scheme is differentiable
we need to show th%(—f3+4fz — 7z (1+ 28 converges to a continuous limit function. This in
turn requires thal(2) = &(—z >+ 4z 2 -z 1)(1+ 2)? satisfy a norm estimate as before. The rowBof
have non-zero entries 6, 1), and(=, 2, 1) respectively. ThugD|| = 1, which is not strong enough.
However, with a little bit more work one can show thi@?|| = %, so that indeed the 4 point scheme is
cl.
In general, the difficult part is to find a set of coefficients for which subdivision converges. There
is no general method to achieve this. Once a convergent subdivision scheme is found, one can always

obtain a desired order of continuity by convolving with the box function.

2.3.3 Summary

So far we have considered subdivision only in the context of splines where the subdivision rule, i.e., the
coefficients used to compute a refined set of control points, was fixed and everywhere the same. There
is no pressing reason for this to be so. We can create a variety of different curves by manipulating the
coefficients of the subdivision matrix. This could be done globally or locally. I.e., we could change the
coefficients within a subdivision level and/or between subdivision levels. In this regard, splines are just
a special case of the more general class of curves, subdivision curves. For example, at the beginning of
this chapter we briefly outlined an interpolating subdivision method, while spline based subdivision is
approximating rather than interpolating.

Why would one want to draw a spline curve by means of subdivision? In fact there is no sufficiently
strong reason for using subdivision in one dimension and none of the commercial line drawing packages
do so, but the argument becomes much more compelling in higher dimensions as we will see in later
chapters.

In the next section we use the subdivision matrix to study the behavior of the resulting curve at a point
or in the neighborhood of a point. We will see that it is quite easy, for example, to evaluate the curve
exactly at a point, or to compute a tangent vector, simply from a deeper understanding of the subdivision
matrix.

2.4 Analysis of Subdivision

In the previous section we have shown that uniform spline curves can be thought of as a special case of
subdivision curves. So far, we have seen only examples for which we use a fixed set of coefficients to
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compute the control points everywhere. The coefficients define the appearance of the curve, for example,
whether it is differentiable or has sharp corners. Consequently it is possible to control the appearance of
the curve by modifying the subdivision coefficients locally. So far we have not seen a compelling reason
to do so in the 1D setting. However, in the surface setting it will be essential to change the subdivision
rule locally around extraordinary vertices to ensure maximal order of continuity. But before studying this
guestion we once again look at the curve setting first since the treatment is considerably easier to follow
in that setting.

To study properties such as differentiability of the curve (or surface) we need to understand which
of the control points influences the neighborhood of the point of interest. This notion is captured by the
concept of invariant neighborhoods to which we turn now.

2.4.1 Invariant Neighborhoods

Suppose we want to study the limit curve of a given subdivision scheme in the vicinity of a particular
control point® To determindocal properties of a subdivision curve, we do not need the whole infinite
vector of control points or the infinite matrix describing subdivision of the entire curve. Differentiability,
for example, is a local property of a curve. To study it we need consider only an arbitrarily small piece
of the curve around the origin. This leads to the question of which control points influence the curve in
the neighborhood of the origin?

As a first example consider cubic B-spline subdivision. There is one cubic segment to the left of
the origin with parameter valugése [—1,0] and one segment to the right with parameter rang€0, 1].
Figure 2.6 illustrates that we need 5 control points at the coarsest level to reach any point of the limit curve
which is associated with a parameter value betweé&rand 1. We say that thavariant neighborhood
has size 5. This size depends on the number of non-zero entries in each row of the subdivision matrix,
which is 2 for odd points and 3 for even points. The latter implies that we need one extra control point
to the left of —1 and one to the right of 1.

The fact that the central 5 control points control the behavior of the limit curve at the origin holds
independent of the level. With the central 5 control points at I¢wet can compute the central 5 control
points at levelj + 1. This implies that in order to study the behavior of the curve at the origin all we have

SHere and in the following we assume that the point of interest is the origin. This can always be achieved through renum-
bering of the control points.
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Figure 2.6: In the case of cubic B-spline subdivision the invariant neighborhood is of size 5. It takes
5 control points at the coarsest level to determine the behavior of the subdivision limit curve over the
two segments adjacent to the origin. At each level we need one more control point on the outside of
the intervalt € [—1,1] in order to continue on to the next subdivision level. 3 initial control points for
example would not be enough.

to analyze is a small 5 5 subblock of the subdivision matrix

j+1

i 1610 0)\/p,
ptt 04 400 p,
pyt :% 01610 P}
pi*t 004 40 pl
pitt 00161 P}

Another example is the 4 point subdivision scheme. It has an invariant neighborhood of 7 (see Fig-
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Figure 2.7: In the case of the 4 point subdivision rule the invariant neighborhood is of size 7. It takes 7
control points at the coarsest level to determine the behavior of the subdivision limit curve over the two
segments adjacent to the origin. One extra poirnias needed to computp{“. The other is needed

to computepé”, which requirespé. Two extra points on the left and right result in a total of 7 in the
invariant neighborhood.

ure 2.7). In this case the local subdivision matrix is

pyt -1 9 9 -1 0 0 O pltt
pl it 0O 0 16 0 0 0 O p it
plit o199 10 o0 plit
it |==%] o o o 16 0 0 o0 pot
j+1 16 j+1
P} 0 0 -1 9 9 -1 0 P}
pytt 0O 0 0 0 16 0 O pytt
pit 0O 0 0 -1 9 9 -1 pitt



Some properties of the curves generated by subdivision can be inferred from the properties of the local
subdivision matrix. In particular, differentiability properties of the curve are related to the eigenstructure
of the local subdivision matrix to which we now turn. From now on the synshwlll denote thelocal
subdivision matrix.

2.4.2 Eigen Analysis

Recall from linear algebra that agenvectoix of the matrixM is a non-zero vector such thistx = Ax,
where) is a scalar. We say thatis theeigenvaluecorresponding to the eigenvectar

Assume the local subdivision mati®has sizen x n and has real eigenvectaxg, X1, ... ,Xn_1, Which
form a basis, with corresponding real eigenvaldigs> A1 > ... > A,_1. For example, in the case of
cubic splinesn=5 and

(Ao, A1,A2,A3,A4) = (1,%,%,%%)
1 -1 1 10
1 -3 & 00
(X0,X1,X2,X3,X4) = [ 1 0 —& 0 0
BEEE
1 1 1 01

Note: not all subdivision schemes have only real eigenvalues or a complete set of eigenvectors. For
example, the 4 point scheme has eigenvalues

1 1 )
16" 16"
but it does not have a complete set of eigenvectors. These degeneracies are the cause of much technical

difficulty in the theory of subdivision. To keep our exposition simple and communicate the essential
ideas we will ignore these cases and assume from now on that we have a complete set of eigenvectors.

1111
0\0’)\1’)\2))\3’)\45)\5)\6) = (1’ E’ Z’ Za é’_

In this setting we can write any vectriof lengthn as a linear combination of eigenvectors:

n-1
X = Zaxi
i=

Similarly, we can write a decomposition of this type for a veqiaof n 2-D pointsrather than single
numbers. In this case each “coefficiemi”is a 2-D point. The eigenvectors,... ,Xn_1 are simply
vectors ofn real numbers.
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In the basis of eigenvectors we can easily compute the result of application of the subdivision matrix
to a vector of control points, that is, the control points on the next level

n—-1

$° = SY ax
2,
n—-1

= Z;aiS(i by linearity of S
i=

n-1
= i; aNiXi

Applying S jtimes, we obtain
) o n—1 .
pl=9p°= i;ew\i’xi.

2.4.3 Convergence of Subdivision

If Ao > 1, thenSIx° would grow without bound agincreased and subdivision would not be convergent.
Hence, we can see that in order for the sequ&hge®to converge at all, it is necessary that all eigenvalues
are at most 1. It is also possible to show that only a single eigenvalue may have magnitude 1 [21].
A simple consequence of this analysis is that we can compute the limit position directly in the eigen-
basis
n—-1 .
P*(0) = lim Sp° = lim %aﬂ\i’xi = a,
] —0 J—00 i=
since all eigen componenisi| < 1 decay to zero. For example, in the case of cubic B-spline subdivision
we can compute the limit position qrgd as

P =ag= é(pij_1+4pij +pl.)-

Note that this expression is completely independent of the leaklvhich it is computed.

2.4.4 Invariance under Affine Transformations

If we moved all the control points simultaneously by the same amount, we would expect the curve defined
by these control points to move in the same way as a rigid object. In other words, the curve should be
invariant under distance-preserving transformations, such as translation and rotdtidollows from
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linearity of subdivision that if subdivision is invariant with respect to distance-preserving transforma-
tions, it also should be invariant under any affine transformations. The family of affine transformations
in addition to distance-preserving transformations, contains shears.

Figure 2.8: Invariance under translation.

Let1 be am-vector of 1's anda € RZ a displacement in the plane (see Figure 2.8) Therrepresents
a displacement of our seven points by a veatokpplying subdivision to the transformed points, we get

Sp'+i-a) = S'+91-a) by linearity ofS
pItlygi a).

From this we see that for translational invariance we need
Sia=1a

Therefore 1 should be the eigenvector 8fvith eigenvalue\g = 1.

Recall that when proving convergence of subdivision we assumed ihanh eigenvector with eigen-
value 1. We now see that this assumption satisfied by any reasonable subdivision scheme. It would be
rather unnatural if the shape of the curve changed as we translate control points.
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2.4.5 Geometric Behavior of Repeated Subdivision

If we assume thakg is 1, and all other eigenvalues are less than 1, we can choose our coordinate system
in such a way thady is the origin inR2. In that case we have

) n-1 .
pl = i; AN/ xi

Dividing both sides by\{, we obtain

1 J n—-1 )\i j
)\—ip —alxl+izza()\—l> X;.

If we assume thal\,|, ... ,|An_1| < |A1], the sum on the right approaches zerg as . In other words
the term corresponding o, will “dominate” the behavior of the vector of control points. In the limit,
we get a set off points arranged along the vectmr. Geometrically, this is a vector tangent to our curve
at the center point (see Figure 2.9).

Just as in the case of computing the limit point of cubic B-spline subdivision by compagting can
compute the tangent vector |a}‘t by computingay

" =a=p. Py

If there were two equal eigenvalues, Say= A,, asj increases, the points in the limit configuration
will be linear combinations of two vectoeg anday, and in general would not be on the same line. This
indicates that there will be no tangent vector at the central point. This leads us to the following condition,
that, under some additional assumptions, is necessary for the existence of a tangent

All eigenvalues of S excepg = 1 should be less thah;.

2.4.6 Summary

For our subdivision matriswe desire the following characteristics
e the eigenvectors should form a basis;
¢ the first eigenvaluég should be 1;
¢ the second eigenvalug should be less than 1;

¢ all other eigenvalues should be less than
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successive levels of enlarged versions of

subdivision left hand side curves
displaced relative "zooming in" on the
to each other center vertex

zoom factor 1

zoom factor 2

zoom factor 4

7

7

zoom factor 8

Figure 2.9: Repeatedly applying the subdivision matrix to our seioohtrol points results in the control
points converging to a configuration aligned with the tangent vector. The various subdivision levels have
been offset vertically for clarity.
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Chapter 3

Subdivision Surfaces

Denis Zorin, Stanford University — New York University

In this chapter we review the basic theory of subdivision in two dimensions, and describe a number of
subdivision schemes: Doo-Sabin, Catmull-Clark, Loop, Modified Butterfly, Kobbelt, Midedge.

Some of these schemes were around for a while: the 1978 papers of Doo and Sabin and Catmull and
Clark were the first papers describing subdivision algorithms for surfaces. Other schemes are relatively
new. Remarkably, during the period from 1978 until 1995 little progress was made in the area. In fact,
until Reif's work onC!-continuity of subdivision most basic questions about the behavior of subdivision
surfaces near extraordinary vertices were not answered. Since then there was a steady stream of new
theoretical and practical results: classical subdivision schemes were analyzed [20, 12], new schemes were
proposed [26, 9, 7, 13], and general theory was develope@*fandCK-continuity of subdivision [19,

14, 22, 24]. Smoothness analysis was performed in some form for all schemes described in this chapter;
for all of them, definitive results were obtained during the last 2 years only.

One of the goals of this chapter is to provide an accessible introduction to the mathematics of sub-
division surfaces (Sections 3.2 and 3.3. Building on the material of the first chapter, we concentrate on
the few general concepts that we believe to be of primary importance: subdivision surfaces as parametric
surfacesCl—continuity, eigenstructure of subdivision matrices, characteristic maps.

The developments of recent years convinced us of the importance of understanding the mathematical
foundations of subdivision. A Computer Graphics professional who wishes to use subdivision in his
code, probably is not interested in the subtle points of a theoretical argument. However, understanding
the general concepts that are used to construct and analyze subdivision schemes would help her choose
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the most appropriate subdivision algorithm or customize one for her needs.

We continue the chapter with an overview of the variety of existing surface subdivision schemes
(Section 3.4). We attempt to describe various schemes in a systematic way to make it easier for the
readers to understand the differences and similarities of different algorithms. Finally, we conclude with
a discussion of the problems and limitations of subdivision (Section 3.5).

3.1 Subdivision Surfaces: an Example

One of the simplest subdivision schemes isltbep schemeinvented by Charles Loop [10]. We will
use this scheme as an example to introduce some basic features of subdivision for surfaces.

The Loop scheme is defined for triangular meshes. The general pattern of refinement, which we call
vertex insertionis shown in Figure 3.1.

Figure 3.1: Refinement of a triangular mesh. New vertices are shown as black dots. Each edge of the the
control mesh is split into two, and new vertices are reconnected to form 4 new triangles, replacing each
triangle of the mesh.

Like most (but not all) other subdivision schemes, this scheme is based on a spline basis function,
called the three-directional quartic box spline. Unlike more conventional splines, such as the bicubic
spline, the three-directional box spline is defined on the redritargular grid; the generating polyno-
mial for this spline is

1
S21,22) = 75 (1+ 2)2(1+2)*(1+z2)%.
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This spline basis function i82. Subdivision rules for it are shown in Figure 3.2.

I
5 1 1
16 16
10
3/ 31 16 i
8 8 16 16
1 1
1 16 16
8

Figure 3.2: Subdivision coefficients for a three directional box spline.

In one dimension, once a spline basis is chosen, all the coefficients of the subdivision rules that are
needed to generate a curve are completely determined. The situation is radically different and much more
complex for surfaces. The structure of the control polygon for curves is always very simple: the vertices
are arranged into a chain, and any two pieces of the chain of the same length always have identical
structure. For two-dimensional meshes, the local structure of the mesh may vary. For example, the
number of edges emanating from a vertex may be different from vertex to vertex. As a result the rules
derived from the spline basis function may be applied only to parts of the mesh that are locally regular;
that is, only to those vertices that have a valence of 6 (in the case of triangular schemes). In other cases,
we have to design new rules for vertices with different valences. Such vertices aresxatintdinary

For the time being, we consider only meshes without a boundary. Note that in the example of the
Loop subdivision scheme the rule used to compute the control point inserted at an edge can be applied
anywhere. The only rule that needs modification is the rule used to compute new positions of control
points inherited from the previous level.

Loop proposed to use coefficients shown in Figure 3.3. It turns out that this choice of coefficients
guarantees that the limit surface of the scheme is “smooth.”

Note that these new rules only influence local behavior of the surface near extraordinary vertices. All
vertices inserted in the course of subdivision are always regular, i.e., have valence 6.

This example demonstrates the main challenge in the design of subdivision schemes for surfaces:
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Figure 3.3: Loop scheme: coefficients for extraordinary vertices.

one has to define additional rules for irregular parts of the mesh in such a way that the limit surfaces
have desired properties, in particular, are smooth. To understand why particular coefficients were chosen
for Loop and other schemes, we have to define more precisely what a smooth surface is (Section 3.2),
introducing two concepts of geometric smoothnesargent plane continuitgndC*-continuity. Next,

we explain how it is possible to understand local behavior of subdivision near extraordinary vertices
using subdivision matrices (Section 3.3). Finally, in Section 3.4 we discuss a variety of subdivision rules
in a systematic way.

3.2 Smoothness of Surfaces

Intuitively, we call a surface smooth, if, at a close distance, it becomes indistinguishable from a plane.
Before discussing smoothness of subdivision surfaces in greater detail, we have to define more precisely
what we mean by a surface, in a way that is convenient for analysis of subdivision.

The discussion in the section is somewhat informal; for a more rigorous treatment, see [19, 18, 22],

3.2.1 Natural Parameterization of Subdivision Surfaces

The Subdivision process produces a sequence of polyhedra with increasing numbers of faces and vertices.
Intuitively, the subdivision surface is the limit of this sequence. The problem is that we have to define
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what we mean by the limit more precisely. For this, and many other purposes, itis convenient to represent
subdivision surfaces as functions defined on some parametric domain with vaRé&slimthe regular
case, the plane or a part of the plane is the domain. However, for arbitrary control meshes, it might be
impossible to parameterize the surface continuously over a planar domain.

Fortunately, there is a simple construction that allows one to usénified control mesh or more
precisely, the corresponding polygonal complex, as the domain for the surface.

Parameterization over the initial control mesh We start with the simplest case: suppose the initial
control mesh is a simple polyhedron, i.e., it does not have self-intersections.

Suppose each time we apply the subdivision rules to compute the finer control mesh, we also apply
midpoint subdivision to a copy of the initial control polyhedron (see Figure 3.4). This means that we
leave the old vertices where they are, and insert new vertices splitting each edge in two. Note that
each control point that we insert in the mesh using subdivision corresponds to a point in the midpoint-
subdivided polyhedron. Another important fact is that midpoint subdivision does not alter the control
polyhedron regarded as a set of points; and no new vertices inserted by midpoint subdivision can possibly
coincide.

We will use the second copy of the control polyhedron as our domain. We denoti€ itadeen it is
regarded as a polyhedron with identified vertices, edges and facel jamten it is regarded simply as
a subset oR3.

Important remark on notation: we will refer to the points computed by subdivision @antrol
points; the wordvertex is reserved for the vertices of the polyhedron that serves as the domain and
new vertices added to it by midpoint subdivision. We will use the latterdenote vertices, angl (v) to
denote the control point correspondingvtafter j subdivision steps.

As we repeatedly subdivide, we get a mapping from a denser and denser subset of the domain to the
control points of a finer and finer control mesh. At each step, we linearly interpolate between control
vertices, and regard the mesh generated by subdivision as a piecewise linear function on thekdomain
Now we have the same situation that we had for curves: a sequence of piecewise linear functions defined
on a common domain. If this sequence of functions converges uniformly, the limit is & rfinam |K|
into R3. This is the limit surface of subdivision.

An important fact about the parameterization that we have just constructed is that for a regular mesh
the domain can be taken to be the plane with a regular triangular grid. If in the regular case the subdivision
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Figure 3.4: Natural parameterization of the subdivision surface

scheme reduces to spline subdivision, our parameterization is precisely the standaphrameteriza-
tion of the spline, which is guaranteed to be smooth.

To understand the general idea, this definition is sufficient, and a reader not interested in the sub-
tle details can proceed to the next section and assume from now on that the initial mesh has no self-
intersections.

General case The crucial fact that we needed to parameterize the surface over its control polyhedron
is the absence of self-intersections. Otherwise, it could happen that a vertex on the control polyhedron
has more than one control point associated with it.

In general, we cannot rely on this assumption: quite often control meshes have self-intersections or
coinciding control points. We can observe though that the positions of vertices of the control polyhedron
are of no importance for our purposes: we can deform it in any way we want. In many cases, this
is sufficient to eliminate the problem with self intersections; however, there are cases when the self-
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intersection cannot be removed by any deformation (example: Klein bottle, Figure 3.5). It is always
possible to do that if we place our mesh in a higher-dimensional space; in fact, 4 dimensions are always
enough.

Figure 3.5: The surface (Klein bottle) has an intersection that cannot be removed in 3D.

This leads us to the following general choice of the domain: a polyhedron with no self-intersections,
possibly in four-dimensional space. The polyhedron has to have the same structure as the initial control
mesh of the surface, that is, there is a one-to-one correspondence between vertices, edges and faces of
the domain and the initial control mesh. Note that now we are completely free to chose the control points
of the initial mesh any way we like.

3.2.2 Cl-continuity and Tangent Plane Continuity

Now that we have defined the subdivision surface as a fundtiofK| — R® on a polyhedron, we can
formalize our intuitive notion of smoothness, namely local similarity to a piece of the plane. A surface is
smooth at a poink of its domain|K]|, if for a sufficiently small neighborhoody of that point the image
f(Ux) can be smoothly deformed into a a planar disk. More precisely,

Definition 1 A surface f: |K| — R is Cl-continuous if for every point xc |K| there exists a regular
parameterizatior: D — f(Uy) of f(Uy) over a unit disk D in the plane, wherg i$ the neighborhood

in |K| of x. Aregular parameterizatiornrtis one that is continuously differentiable, one-to-one, and has
a Jacobi matrix of maximum rank.

The condition that the Jacobi matrix pfhas maximum rank is necessary to make sure that we have no
degeneracies, i.e., that we really do have a surface, not a curve or pgint. (Ip1, p2, ps) and the disc
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is parameterized by, andx,, the condition is that the matrix

opL  0py
0X1 aXZ
o 0P
aX1 aXZ
ops  dps
aX1 aXZ

have maximal rank (2).
There is another, weaker, definition of smoothness, which is often useful:

Definition 2 A surface f. |K| — R3istangent plane continuoust x< |K| if and only if surface normals
are defined in a neighborhood around x and there exists a limit of normals at x.

This is a useful definition, since it is easier to prove surfaces are tangent plane continuous (all that is
required is to show the existence of a limit). Additionally the definition is very intuitive since it captures
the notion that a surface is smooth if there exists a tangent plane. Tangent plane continuity, however, is
weaker tharC!-continuity.

As a simple example of a surface that is tangent plane continuous b0t nocinsider the shape in
Figure 3.6. Points in the vicinity of the central point are “wrapped around twice.” There exists a tangent
plane at that point, but the surface does not “locally look like a plane.” Formally, there does not exist a
regular parameterization from the unit disc onto the neighborhood of the center point, even though it has
a well-defined tangent plane.

From the previous example, we see how the definition of tangent plane continuity must be strength-
ened to becom€!:

Lemma 4 If a surface is tangent plane continuous at a point and the projection of the surface onto the
tangent plane at that point is one-to-one, the surfacelis C

The proof can be found in [22].

3.3 Analysis of Subdivision Surfaces

In this section we discuss how to analyze smoothness of subdivision surfaces. Typically, it is known a
priori that a scheme produc€s-continuous (or better) surfaces in the regular setting. For local schemes
in most cases this means that the surfaces generated on arbitrary megbes@ménuous away from

the extraordinary vertices. We start with a brief discussion of this fact, and than concentrate on analysis
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Figure 3.6: Example of a surface that is tangent plane continuous bGt not

of the behavior of the schemes near extraordinary vertices. Our goal is to formulate and provide some
motivation for Reif’s sufficient condition foE-continuity of subdivision.

We assume a subdivision scheme defined on a triangular mesh, with certain restrictions on the struc-
ture of the subdivision matrix. Similar derivations can be performed without these assumptions, but they
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become significantly more complicated. We consider the simplest case so as not to obscure the main
ideas of the analysis.

3.3.1 Cl-continuity of Subdivision away from Extraordinary Vertices

Most subdivision schemes are constructed from regular schemes, which are known to produce at least
Cl-continuous surfaces in the regular setting for almost any initial configuration of control points. If our
subdivision rules are local, we can take advantage of this knowledge to show that the surfaces generated
by the scheme ar@!-continuous for almost any choice of control points anywraesay from extraor-
dinary vertices We call a subdivision scheme local, if only a finite number of control points is used to
compute any new control point, and does not exceed a fixed nunmfoerall subdivision levels and all
control points.

One can demonstrate, as we did for the curves, that for any triangi¢he domain the surfacg(T)
is completely determined by only a finite number of control points corresponding to vertices around
T. For example, for the Loop scheme, we need only control points for vertices that are adjacent to the
triangle. (see Figure 3.7). This is true for triangles at any subdivision level.

Figure 3.7: Control set for a triangle for the three-directional box spline.

To show this, fix a poink of the domainK| (not necessarily a vertex). For any leyek is contained
in a face of the domain; i is a vertex, it is shared by several faces. Uétx) be the collection of faces
on levelj containingx, the 1-neighborhoodf x. The 1-neighborhood of a vertex can be identified with a
k-gon in the plane, wherkis the valence. We negdo be large enough so that all neighbors of triangles
in Ul(x) are free of extraordinary vertices. Unlesis an extraordinary vertex, this is easily achieved.
f(Ul(x)) will be regular (see Figure 3.8).

This means thaf (U!(x)) is identical to a part of the surface corresponding to a regular mesh, and is
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Figure 3.8: 2-neighborhoods (1-neighborhood of 1-neighborhood) of veAid@<ontain only regular
vertices; this is not the case fBr which is an extraordinary vertex.

thereforeC!-continuous for almost any choice of control points by assumption.

3.3.2 Smoothness Near Extraordinary Vertices

Now that we know that surfaces generated by our scheme are (at@@asthtinuous away from the
extraordinary vertices, all we have to do is find a a smooth parameterization near each extraordinary
verteX, or establish that no such parameterization exists.

Consider the extraordinary vert&in Figure 3.8. After sufficient number of subdivision steps, we
will get a 1-neighborhootl | of B, such that all control points definingU !) are regular, excei itself.
This demonstrates that it is sufficient to determine if the scheme gen@atantinuous surfaces for
a very specific type of domairi§: triangulations of the plane which have a single extraordinary vertex
in their center, surrounded by regular vertices. We can assume all triangles of these triangulations to be
identical (see Figure 3.9) and call such triangulatikmegular.

At first, the task still seems to be very difficult: for any configuration of control vertices, we have to
find a parameterization df(U!). However, it turns out that the problem can be further simplified.

We outline the idea behind sufficientcondition forC*-continuity proposed by Reif [19]. This cri-
terion tells us when the scheme is guaranteed to pro@be®ntinuous surfaces, but if it fails, it is still
possible that the scheme might®&

We need two closely related tools to formulate the criterionstitmdivision matrixand thecharacter-
istic map It turns out that rather than trying to consider all possible surfaces generated by subdivision, it
is typically sufficient to look at a single map—the characteristic map. You have already seen subdivision

1our argument is informal, and there are certain unusual cases when it fails; see [22] for details.
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Figure 3.9:k-regular triangulation fok = 9.
matrices for one-dimensional schemes. Now we are going to extend this concept to two dimensions.

Subdivision matrix For the Loop scheme control points for only two rings of vertices around an ex-
traordinary vertexB definef (U) completely. We will call the set of vertices in these two ringsdbatrol
setofU.

Let p(j) be the value at levell of the control point corresponding B Assign numbers to the vertices
in the two rings (there areertices). Note that/ | andU 11 are similar: one can establish a one-to-one
correspondence between the vertices simply by shrinldihgy a factor of 2. Enumerate the vertices in

5

6

Figure 3.10: The Loop subdivision scheme near a vertex of degree 3. Notext®at 3 = 10 points in
two rings are required.

the rings; there is total ofl@vertices, plus the vertex in the center. lpéli =1...3kbe the corresponding
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control points.

By definition of the control set, we can compute all vallmééil from the valuespij. Because we only
consider subdivision which computes finer levels by linear combination of points from the coarser level,
the relation between the vectors of poipts® andp! is given by a 8+ 1 x 3k+ 1 matrix:

j+1

Po j

Po

péil Pax
It is important to remember that each componenpbfs a point in the three-dimensional space. The
matrix Sis the subdivision matrix, which, in general, can change from level to level. We consider only
schemes for which it is fixed. Such schemes are callationary
We can now rewrite each of the coordinate vectors in terms of the eigenvectors of theSifatnn-
pare to the use of eigen vectors in the 1D setting). Thus,

P’ =3 ax
and
Pl =(9)'p" =y (A)a

where thex; are the eigenvectors & and the)\; are the corresponding eigenvalues, arranged in nonin-
creasing order. As discussed for the one-dimensional ag$&s to be 1 for all subdivision schemes, in
order to guarantee invariance with respect to translations and rotations. Furthermore, all stable, converg-
ing subdivision schemes will have all the remainkdess than 1.

Subdominant eigenvalues and eigenvectorslt is clear that as we subdivide, the behaviopbfwhich
determines the behavior of the surface in the immediate vicinity of our point of interest, will depend only
on the eigenvectors corresponding to the largest eigenvalligs of

To proceed with the derivation, we will assume for simplicity that A; = A, > Az. We will call
A1 andA, subdominant eigenvalueBurthermore, we ledy = 0; this corresponds to choosing the origin
of our coordinate system in the limit position of the vertex of interest (just as we did in the 1D setting).
Then we can write

pj

Az
O\)J = a1X1 + apXo + (73) X3... (31)
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where the higher-order terms disappear in the limit.

This formula is very important, and deserves careful consideration. Recail tisat vector of 8+ 1
3D points, whilex; are vectors of 84+ 1 numbers. Hence the coefficiersin the decomposition above
have to be 3D points.

This means that, up to a scaling by)!, the control set forf (U) approaches a fixed configuration.
This configuration is determined by andx,, which depend only on the subdivision scheme, and;on
anday which depend on the initial control mesh.

Each vertex imp! for sufficiently largej is a linear combination of; anday, up to a vanishing term.
This indicates thah; anda, span the tangent plane. Also note that if we apply an affine transfgorm
taking a; anda, to coordinate vectors; ande; in the plane, then, up to a vanishing term, the scaled
configuration will be independent of the initial control mesh. The transformed configuration consists of
2D points with coordinategxj, X2 ), i = 0...3k, which depend on the subdivision matrix.

Informally, this indicates that up to a vanishing term, all subdivision surfaces generated by a scheme
differ near an extraordinary point only by an affine transform. In fact, this is not quite true: it may happen
that a particular configuratiofxyi,x;), i = 0...3k does not generate a surface patch, but, say, a curve.

In that case, the vanishing terms will have influence on the smoothness of the surface.

Figure 3.11: Control set of the characteristic mapkfer 9.
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3.3.3 Characteristic Map

Our observations motivate the definition of ttiearacteristic mapinformally speaking, any subdivision
surface generated by a scheme looks near an extraordinary vertex of \alikedbe characteristic map
of that scheme for valende

Note that when we described subdivision as a function from the plafRé twe may use control
vertices not fromR3, but fromR?; clearly, subdivision rules can be applied in the plane rather then in
space. Then in the limit we obtain a map from the plane into the plane. The characteristic map is a map
of this type.

As we have seen, the configuration of control points near an extraordinary vertex appraaghes
axXp, Up to a scaling transformation. This means that the part of the surface defined legdhé)
asj — o, and scaled by the factoy/d!, approaches the surface defined by the vector of control points
a;x1 + aXp. Letf[p]: U — R be the limit surface generated by subdivisionlbfrom the control set

p.

Definition 3 The characteristic map of a subdivision scheme for a valence k is thedmap — R?
generated by the vector of 2D control pointxe+ exxe: @ = flerx; + exXz], where @ and e are unit
coordinate vectors, andp»and % are subdominant eigenvectors.

Regularity of the characteristic map Inside each triangle of thiegonU, the map isC!: the argu-

ment of Section 3.3.1 can be used to show this. Moreover, the map has one-sided derivatives on the

boundaries of the triangles, except at the extraordinary vertex, so we can define one-sided Jacobians on

the boundaries of triangles too. We will say that the characteristic maggisar if its Jacobian is not

zero anywhere ol excluding the extraordinary vertex but including the boundaries between triangles.
The regularity of the characteristic map has a geometric meaning: any subdivision surface can be

written, up to a scale factdy!, as

fIp'](t) = A®(t) +a(t)O ((As/A)!)

t € UJ, a(t) a bounded functiok) ! — R3, andA is a linear transform taking the unit coordinate vectors
in the plane ta; anday. Differentiating along the two coordinate directidnsandt, in the parametric
domainU/, and taking a cross product, after some calculations, we get the expression for the normal to
the surface:

n(t) = (a1 x &)J[@(1)] + O ((As/N)?) &(t)

whereJ[®] is the Jacobian, ara(t) some bounded vector function oH.
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The fact that the Jacobian does not vanishdameans that the normal is guaranteed to converge to
a; x ap; therefore, the surface is tangent plane continuous.

Now we need to take only one more step. If, in addition to regularity, we assume tisahjective,
we can invert it and parameterize any surfacd @1(s)), wheres € ®(U). Intuitively, it is clear that
up to a vanishing term this map is just an affine map, and is differentiable. We omit a rigorous proof
here. For a complete treatment see [19]; for more recent developments, see [22] and [24].

We arrive at the following condition, which is the basis of smoothness analysis of all subdivision
schemes considered in these notes.

Reif’s sufficient condition for smoothness.Suppose the eigenvectors of a subdivision matrix form a
basis, the largest three eigenvalues are real and satisfy

)\o:1>7\1:7\2>‘)\3’

If the characteristic map is regular, then almost all surfaces generated by subdivision are tangent
plane continuous; if the characteristic map is also injective, then almost all surfaces generated by
subdivision ar&C*-continuous.

Note: Reif’s original condition is somewhat different, because he defines the characteristic map on an
annular region, rather than orkegon. This is necessary for applications, but makes it somewhat more
difficult to understand.

In the next section, we will discuss the most popular stationary subdivision schemes, all of which
have been proved to I6&*-continuous at extraordinary vertices. These proofs are far from trivial: check-
ing the conditions of Reif’s criterion is quite difficult, especially checking for injectivity. In most cases
calculations are done in symbolic form and use closed-form expressions for the limit surfaces of subdivi-
sion [20, 7, 12, 13]. In [23] an interval-based approach is described, which does not rely on closed-form
expressions for limit surfaces, and can be applied, for example, to interpolating schemes.

3.3.4 Tangents and Limit Positions

Similar to the one-dimensional case, the coefficiegta; anda, in the decomposition 3.1 are the limit
position of the control point for the central vertey and two tangents respectively. To compute these
coefficients, we need corresponding left eigenvectors. In the descriptions of subdivision schemes in the
next section we describe these calculations whenever information is available.
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3.4 Subdivision Zoo

3.4.1 Overview of Subdivision Schemes

In this section we describe most known stationary subdivision schemes gen&htiogtinuous sur-
faces on arbitrary meshes. Without doubt, our discussion is not exhaustive even as far as stationary
schemes are concerned. There are even wholly different classes of subdivision schemes, most impor-
tantly variational schemes, that we do not discuss here. Variational subdivision is described in the part
of the notes written by Leif Kobbelt.

At a first glance, the variety of existing schemes might appear chaotic. However, there is a straight-
forward way to classify most of the schemes based on three criteria:

¢ the type of refinement rule (vertex insertion or corner-cutting);
¢ the type of generated mesh (triangular or quadrilateral);
e whether the scheme is approximating or interpolating.

The following table shows this classification:

Vertex insertion Corner-cutting
Triangular meshes Quadrilateral meshes Doo-Sabin
Approximating| Loop Catmull-Clark Midedge
Interpolating | Modified Butterfly | Kobbelt

It can be seen from this table that there is little replication in functionality: most schemes produce
substantially different types of surfaces. Now we consider our classification criteria in greater detail.

First, we note that each subdivision scheme defined on meshes of arbitrary topology is based on a
regular subdivision schenwmich as a subdivision schemes for splines, for example. Our classification is
primarily a classification of regular subdivision schemes—once such a scheme is fixed, additional rules
have to be specified only for extraordinary vertices or faces that cannot be part of a regular mesh.

Mesh type Regular subdivision schemes act on regular control meshes, that is, vertices of the mesh
correspond to regularly spaced points in the plane. However, the faces of the mesh can be formed in
different ways. For a regular mesh, it is natural to use faces that are identical. If, in addition, we assume
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that the faces are regular polygons, it turns out that there are only three ways to choose the face polygons:
we can use only squares, equilateral triangles and regular hexagons. Meshes consisting of hexagons are
not very common, and the first two types of tiling are the most convenient for practical purposes. These
leads to two types of regular subdivision schemes: those defined for quadrilateral tilings, and those
defined for triangular tilings.

Vertex insertion and corner-cutting Once the tiling of the plane is fixed, we have to define how a
refined tiling generated by the scheme is related to the original tiling. There are two main approaches
that are used to generate a refined tiling: ongeagex insertionand the other igorner cutting(see

Figure 3.12). The schemes using the first method are often galiethl, and the schemes using the
second method are call@tial. In the first case, each edge of a triangular or a quadrilateral mesh is split
into two, old vertices of the mesh are retained, and new vertices inserted on edges are connected. For
guadrilaterals, an additional vertex is inserted for each face.

In the second case, for each old face, a new similar face is created inside of it and the newly created
faces are connected. As a result, we get four new vertices for each old edge, a new face for each edge
and each vertex. The old vertices are discarded. Geometrically, one can think about this process as first
cutting off the vertices, and then cutting off the edges of a polyhedron. For quadrilateral tilings, this can
be done in such a way that the refined tiling has only quadrilateral faces. For triangles, we can get only a
hexagonal tiling. Thus, a regular corner-cutting algorithm for triangles would have to alternate between
triangular and hexagonal tilings.

Approximation vs. Interpolation  Vertex insertion schemes can be interpolating or approximating: as
the vertices of the coarser tiling are also vertices of the refined tiling, for each vertex a sequence of control
points, corresponding to different subdivision levels, is defined. If all points in the sequence are the same,
we say that the scheme is interpolating. Otherwise, we call it approximating. Interpolation is an attractive
feature in more than one way. First, the original control points defining the surface are also points of the
limit surface, which allows one to control it in a more intuitive manner. Second, many algorithms can be
considerably simplified, and many calculations can be performed “in place.” Unfortunately, the quality
of these surfaces is not as high as the quality of surfaces produced by approximating schemes, and the
schemes do not converge as fast to the limit surface as the approximating schemes.

We concentrate primarily on vertex insertion schemes; we discuss one corner-cutting scheme, Doo-
Sabin. The Midedge subdivision scheme, proposed by Habib and Warren [6], and independently discov-
ered by Peters and Reif [13], is discussed in the part of these notes writtengoyeXers.
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Corner-cutting for quadrilaterals

Vertex insertion for triangles

Figure 3.12: Enumeration of vertices of a mesh near an extraordinary vertex; for a boundary vertex, the

0—th sector is adjacent to the boundary.

3.4.2 Notation and Terminology

Here we summarize the notation that we use in subsequent sections. Some of it was already introduced

earlier.

Regular and extraordinary vertices. We have already seen that subdivision schemes defined on trian-
gular meshes create new vertices only of valence 6 in the interior. On the boundary, the newly
created vertices have valence 4. Similarly, on quadrilateral meshes both vertex-insertion and
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corner-cutting schemes create only vertices of valence 4 in the interior, and 3 on the boundary.
Hence, after several subdivision steps, most vertices in a mesh will have one of these valences (6
in the interior, 4 on the boundary for triangular meshes, 4 in the interior, 3 on the boundary for
quadrilateral). The vertices with these valences are cadigdlar, and vertices of other valences
extraordinary

Notation for vertices near a fixed vertex. In Figure 3.13 we show the notation that we use for vertices
of quadrilateral and triangular subdivision schemes near a fixed vertex. Typically, we need it for
extraordinary vertices; we also use it for regular vertices, to describe calculations of limit positions
and tangent vectors. Note that this notation is for a fixed level; the names of vertices changes from
one level to the next. For brevity, we denote the vqtd;@/ij’l) by pi{l.

J J J J
Pisiz Pin P Pin

Figure 3.13: Enumeration of vertices of a mesh near an extraordinary vertex; for a boundary vertex, the
0—th sector is adjacent to the boundary.

Odd and even vertices. For vertex insertion (primal) schemes, the vertices of the coarser mesh are also
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vertices of the refined mesh. For any subdivision level, we call all new vertices that are created
at that level,odd vertices This term comes from the one-dimensional case, when vertices of the
control polygons can be enumerated sequentially and on any level the newly inserted vertices are
assigned odd numbers. The vertices inherited from the previous level are eatled See also
Chapter 2).

Face and edge verticesFor triangular schemes (Loop and Modified Butterfly), there is only one type
of odd vertex. For quadrilateral schemes, some vertices are inserted when edges of the coarser
mesh are split, other vertices are inserted for a face. These two types of odd vertices are called
edgeandfacevertices respectively.

Boundaries and creases.Typically, special rules have to be specified on the boundary of a mesh. These
rules are commonly chosen in such a way that the boundary curve of the limit surface does not
depend on any interior control vertices, and is smooth or piecewise sn@btht C2). The same
rules can be used to introduce sharp features@iteurfaces: some interior edges cantégged
as crease edges, and boundary rules are applied for all vertices that are inserted on such edges.

Masks. We often specify a subdivision rule by providing iteask The mask is a picture showing which
control points are used to compute a new control point, which we denote with a black dot. The
numbers are the coefficients of the subdivision rule. For example, ip, are vertices of an
edge, and;z andv, are the other two vertices of the triangles that share this edge, then the Loop
subdivision rule for an interior odd vertexdepicted in Figure 3.14, can be written as

. 3 . 3 . 1 . 1 .
P (v = 5P/ () + 5P (Vo) + 5P (V8) + 5P (va)

3.4.3 Loop Scheme

The Loop scheme is a simple approximating vertex insertion scheme for triangular meshes proposed by
Charles Loop [10].C*-continuity of this scheme for valences up to 100, including the boundary case,
was proved by Schweitzer [20]. The proof for all valences can be found in [22].

The scheme is based on ttreee-directional box splinevhich produce€?-continuous surfaces on
the regular meshes. The Loop scheme produces surfaces ti@t-epatinuous everywhere except at
extraordinary vertices, where they aé-continuous. Hoppe, DeRose, Duchamp et al. [8] proposed a
piecewiseCt-continuous extension of the Loop scheme, with special rules defined for edges.

The scheme can be applied to arbitrary polygonal meshes, after the mesh is converted to a triangular
mesh, for example, by triangulating each polygonal face.
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Subdivision rules The masks for the Loop scheme are shown in Figure 3.14. For boundaries and
edges tagged ageaseedges, special rules are used. These rules produce a cubic spline curve along the
boundary/crease. The curve does not depend on the control points which correspond to vertices that are

outside the boundary/crease.

1

8
3 3
3 i 3 Interior
1
8
o . Crease and boundary L4 *
1 1 1 3 L
2 2 8 4 8
a. Masks for odd vertices b. Masks for even vertices

Figure 3.14: The Loop subdivision. In the picture abdgesan be chosen to be eithﬁ(5/8— (g +
1 cosZM?) (original choice of Loop [10]), or, fon > 3, B = 2 as proposed by Warren [21]. For= 3,
B =3/16 can be used.

In [8], the rules for extraordinary crease vertices and their neighbors on the crease were modified to
produce tangent plane continuous surfaces on either side of the crease (or on one side of the boundary).
In practice, for reasons discussed in [25], this modification does not lead to a significant difference in
the appearance of the surface. At the same time, as a result of this modification, the boundary curve
becomes dependent on the valences of vertices on the curve. This is a disadvantage in situations when
two surfaces have to be joined together along a boundary. It appears that in practically all cases it is
safe to use the rules shown in Figure 3.14. Although the surface will not be for@aMgar vertices
of valence greater than 7, the result will be visually indistinguishable fr@h-surface obtained with
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modified rules, with the additional advantage of independence of the boundary from the interior.

If it is necessary to ensuf@!-continuity, we propose a different modification. Rather than modifying
the rules for the boundary curve, and making it dependent on the valence of vertices, we modify rules
for interior odd vertices adjacent to an extraordinary vertex.n~ar7, no modification is necessary. For
n> 7, it is sufficient to use the mask shown in Figure 3.15. Then the limit surface can be show®'to be
on the boundary.

Sol~

1
2
extraordinary
vertex

A~

Col~

Figure 3.15: Modified rule for odd vertices adjacent to a boundary extraordinary vertex.

Tangent vectors The rules for computing tangent vectors for Loop’s scheme are especially simple. To
compute a pair of tangent vectors at an interior vertex, use

k—1

2n
t; = 20 cos? p(Vi1)
1 (3.2)

t = %Sinz?np(Vi,l)-
i=
These formulas can be applied to the control points at any subdivision level.

Quite often, the tangent vectors are used to compute a normal. The normal obtained as the cross
productt; x t; can be interpreted geometrically. This cross product can be written as a weighted sum of
normals to all possible triangles with verticpg/), p(vi1), p(Vi,1), i,1 =0...k—1,i #1. The standard
way of obtaining vertex normals for a mesh by averaging the normals of triangles adjacent to a vertex,
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can be regarded as a first approximation to the normals given by the formulas above. At the same time,
it is worth observing that computing normalstas< t, is less expensive than averaging the normals of
triangles. The geometric nature of the normals obtained in this way suggests that they can be used to
compute approximate normals for other schemes, even if the precise normals require more complicated
expressions.

At a boundary vertex, the tangent along the curve is computed tgiRg= p(vo,1) — P(Vk-1,1). The
tangent across the boundary/crease is computed as follows [8]:

tacross= P(Vo,1) + P(V,1) —2p(Vo) fork=2

tacross= p(VZ,l) - p(VO) fork=3 (3.3)

k-2
tacross= SINB (P(Vo.1) + P(Wk-1,1)) + (2cosB — 2) Zl siniep(vi1) fork>4

1=
where® = 11/(k—1). These formulas apply whenever the scheme is tangent plane continuous at the
boundary; it does not matter which method was used to ensure tangent plane continuity.

Limit positions  Another set of simple formulas allows one to compute limit positions of control points
for a fixed vertex, thatis, the limit lif, e p! (v) for a fixedv. For interior vertices, the mask for computing
the limit value at an interior vertex is the same as the mask for computing the value on the next level,
: _ 1
with 3 replaced by = ey
For boundary vertices, the formula is always
© 1 3 1
p” (Vo) = =P(Vo.1) + = P(Vo) + Z P(V1k-1)
5 5 5

This expression is similar to the rule for even boundary vertices, but with different coefficients. However,
different formulas have to be used if the rules on the boundary are modified as in [8].

3.4.4 Modified Butterfly Scheme

The Butterfly scheme was proposed by Dyn, Gregory and Levin in [5]. However, although the original
Butterfly scheme is defined on arbitrary triangular meshes, the limit surface i8lratntinuous at
extraordinary points of valende= 3 andk > 7 [22]. It isC! on regular meshes.

Unlike approximating schemes based on splines, this scheme does not produce piecewise polynomial
surfaces in the limit. In [26] a modification of the Butterfly scheme was proposed, which guarantees that
the scheme produc&'-continuous surfaces for arbitrary meshes (for a proof see [22]). The scheme is
known to beC! but notC? on regular meshes. The masks for the the scheme are shown in Figure 3.16.
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~
Col~
~

16 16
S
S
IV 1
2 2 S,
° 5
1 I
16 1 16
Mask for interior odd vertices with .
regular neighbors S,
Sk—Z
o
1 9 9 1
16 16 16 16
Mask for crease
and boundary vertices
a. Masks for odd vertices b. Mask for odd vertices adjacent to

an extraordinary vertex

Figure 3.16: Modified Butterfly subdivision. The coefficiestare £ (3 + cosA™ + 1 cos4T) for k > 5.

Fork=3,%=3,812=—15fork=4,5%9=23 5= —§,53=0.

The tangent vectors at extraordinary interior vertices can be computed using the same rules as for
the Loop scheme. For regular vertices, the formulas are more complex: in this case, we have to use
control points in a 2-neighborhood of a vertex. If the control points are arranged into a yestor
[Po, Po,1, Po.2; Po3, - - - » Pos, Ps,3] Of length 19, than the tangents are given by scalar prodlctp) and

69



(I2- p), where the vector andl, are

8/34v34v3 8/34v34v3, 1 1 1 ]i

—_ 1. —-—=.—= __ _Z

3’ 3 3" 3 ' 3 30 20 20 o

4\/§ 4\/§ 44/3 443 11 11
0 aoa_éaé’o’

I1:[Q1&—&—&1&—&—&—

|2-[OO8 -8,0,8,-8,0, 3 3 03773 55

(3.4)

Because the scheme is interpolating, no formulas are needed to compute the limit positions: all control
points are on the surface. On the boundary, the four point subdivision scheme is used [4]. To achieve
C!-continuity on the boundary, special coefficients have to be used (see [25] for details).

3.4.5 Catmull-Clark Scheme

The Catmull-Clark scheme was described in [2]. It is based on the tensor product bicubic spline. The
masks are shown in Figure 3.17. The scheme produces surfaces tbaeaeeywhere except at extraor-
dinary vertices, where they a@. The tangent plane continuity of the scheme was analyzed by Ball and
Storry [1], andC-continuity by Peters and Reif [12]. The valuesoo&ndf can be chosen from a wide
range (see Figure 3.18).

On the boundary, using the coefficients for the cubic spline produces acceptable results. See [25] for
further details about the behavior on the boundary.

The rules of Catmull-Clark scheme are defined for meshes with quadrilateral faces. Arbitrary polyg-
onal mesh can be reduced to a quadrilateral mesh using a more general form of Catmull-Clark rules [2]:

e aface control point for an-gon is computed as the average of the corners of the polygon;

¢ an edge control point as the average of the endpoints of the edge and newly computed face control
points of adjacent faces;

¢ the formula for even control points can be chosen in different ways; the original formula is

pj+1(v) _ k pJ k2 Zp Vi) k2 Zle

wherey; are the vertices adjacentymn levelj, andvif are face vertices on levgh- 1 correspond-
ing to faces adjacent ta
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1 1
4 4
[ J
1 1
4 4

Mask for a face vertex

1 1

16 16 Interior
3 o |3
s 18

i i

16 16

Mask for an edge vertex

> f o |
1 1 Crease and boundary I 3 1
2 2 8 4 8
Mask for a boundary odd vertex
a. Masks for odd vertices b. Mask for even vertices

Figure 3.17: Catmull-Clark subdivision. Catmull and Clark [2] suggest the following coefficients for
rules at extraordinary verticef:= . andy= 4

3.4.6 Kobbelt Scheme

This interpolating scheme was described by Kobbelt in [9]. For regular meshes, it reduces to the tensor
product of four point scheme€!-continuity of this scheme for interior vertices for all valences is proven
in [23].

Crucial for the construction of this scheme is the observation (valid for any tensor-product scheme)
that the face control points can be computed in two steps: first, all edge control points are computed.
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B

0.8 |
0.6 1
0.4 1

0.21

0 0.2 0.4 0.6 0.8 1 A

Figure 3.18: Ranges for coefficietsandf of the Catmull-Clark scheme; = 1—y— 3 is the coefficient
of the central vertex.

Next, face vertices are computed using ¢age ruleapplied to a sequence of edge control points on the
same level. As shown in Figure 3.19, there are two ways to compute a face vertex in this way. In the
regular case, the result is the same. Assuming this method of computing all face control points, only one
rule of the regular scheme is modified: the edge odd control points adjacent to an extraordinary vertex
are computed differently. Specifically,

. 1 . 1 . . .
pli = (5 —wpb+ (5 —wply +wpl +wpl;
) — ) _(p/ J J - (p J J J - J
Vi k i; pl,l (plfl,l + pl,l + p|+1,1) 1/2_ W(p|72,2 + p|71,2 + p|,2 + pl+l,2) + (1/2_ W)k i; p|,2

(3.5)

wherew = —1/16 (also, see Figure 3.13 for notation). On the boundaries and creases, the four point
subdivision rule is used.

Unlike other schemes, eigenvectors of the subdivision matrix cannot be computed explicitly; hence,
there are no precise expressions for tangents. In any case, the effective support of this scheme is too large
for such formulas to be of practical use: typically, it is sufficient to subdivide several times and then use,
for example, the formulas for the Loop scheme (see discussion in the section on the Loop scheme).

For more details on this scheme, see the part of the notes written by Leif Kobbelt.
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256 256 256 256
81 81
9 23 256 | 9
256 256
[ )
9 9
T 256 81 81 [ 256
256 256
1 9 9 1
256 256 256 236

Mask for a face vertex

L9 91
16 16 16 16
Mask for edge, crease

and boundary vertices b. Computing a face vertex adjacent to an extraordinary
vertex

a. Regular masks

Figure 3.19: Kobbelt subdivision.

3.4.7 Doo-Sabhin Scheme

The Doo-Sabin subdivision is quite simple conceptually: there is no distinction between odd and even
vertices, and a single mask is sufficient to define the scheme. A special rule is required only for the
boundaries, where the limit curve is a quadratic spline. It was observed by Doo that this can also be
achieved by replicating the boundary edge, i.e., creating a quadrilateral with two coinciding pairs of
vertices. Nasri [11] describes other ways of defining rules for boundaries.

Cl-continuity for schemes similar to the Doo-Sabin schemes was analyzed by Peters and Reif [12].
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Mask for interior vertices
O

1 3

4 4

Mask for boundary vertices

Figure 3.20: The Doo-Sabin subdivision. The coefficients are defined by the foroy#ad /4+ 5/4k
anda; = (3+2cog2itr/k))/4k, fori=1...k—1

3.5 Limitations of Stationary Subdivision

Stationary subdivision, while overcoming certain problems inherent in spline representations, still has
a number of limitations. Most problems are much more apparent for interpolating schemes than for
approximating schemes. In this section we briefly discuss a number of these problems.

Problems with curvature continuity While it is possible to obtain subdivision schemes which are
C2-continuous, there are indications that such schemes either have very large support [17, 15], or nec-
essarily have zero curvature at extraordinary vertices. A compromise solution was recently proposed by
Umlauf [16]. Nevertheless, this limitation is quite fundamental: degeneracy or discontinuity of curvature
typically leads to visible defects of the surface.
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Decrease of smoothness with valenceFor some schemes, as the valence increases, the magnitude of
the third largest eigenvalue approaches the magnitude of the subdominant eigenvalues. As an example
we consider surfaces generated by the Loop scheme near vertices of high valence.
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Figure 3.21: Left: ripples on a surface generated by the Loop scheme near a vertex of large valence;
Right: mesh structure for the Loop scheme near an extraordinary vertex with a significant “high-
frequency” component; a crease starting at the extraordinary vertex appears.

In Figure 3.21 (right side), one can see a typical problem that occurs because of “eigenvalue clus-
tering:” a crease might appear, abruptly terminating at the vertex. In some cases this behavior may be
desirable, but our goal is to make it controllable rather than let the artifacts appear by chance.

Ripples Another problem, presence of ripples in the surface close to an extraordinary point, is also
shown in Figure 3.21. It is not clear whether this artifact can be eliminated. It is closely related to the

curvature problem.

Uneven structure of the mesh On regular meshes, subdivision matricesCdfcontinuous schemes
always have subdominant eigenvaly@1When the eigenvalues of subdivision matrices near extraordi-
nary vertices significantly differ from/2, the structure of the mesh becomes uneven: the ratio of the size
of triangles on finer and coarser levels adjacent to a given vertex is roughly proportional to the magnitude
of the subdominant eigenvalue. This effect can be seen clearly in Figure 3.23.

75



Optimization of subdivision rules It is possible to eliminate eigenvalue clustering, as well as the
difference in eigenvalues of the regular and extraordinary case by prescribing the eigenvalues of the
subdivision matrix and deriving suitable subdivision coefficients. This approach was used to derive
coefficients of the Butterfly scheme.

As expected, the meshes generated by the modified scheme have better structure near extraordinary
points (Figure 3.22). However, the ripples become larger, so one kind of artifact is traded for another. It
is, however, possible to seek an optimal solution or one close to optimal; alternatively, one may resort to
a family of schemes that would provide for a controlled tradeoff between the two artifacts.
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Figure 3.22: Left: mesh structure for the Loop scheme and the modified Loop scheme near an extraor-
dinary vertex; a crease does not appear for the modified Loop. Right: shaded images of the surfaces for
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Chapter 4

Some Properties of Subdivision Derived
from Splines

Author: Jorg Peters

This section discusses some properties of dual subdivision schemes such as Doo-Sabin and generalized
4 direction box spline subdivision, as well as some properties of the Catmull-Clark scheme. In a second
part (co-authored with Ahmad Nasri) it is shown how to compute the volume of a closed subdivision
surface.
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Figure 1: Midedge Subdivision (double steps)

Figure 2: Doo-Sabin subdivision

Figure 3: Catmull-Clark subdivision.
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1 Subdivision schemes generalizing
box spline subdivision

The idea of generating smooth free-form surfaces of arbi-
trary topology by iterated mesh refinement dates back at
least to 1978, when two papers [2], [3] appeared back to
back in the same issue of Computer Aided Design. Named
after their inventors, the Doo-Sabin and the Catmull-Clark

algorithm represent generalizations of the refinement schemes

for biguadratic and bicubic B-splines, respectively. By
combining a construction principle of striking simplicity
with high fairness of the generated surfaces, both algo-
rithms have since become standard tools in graphics (cf.
Figures 2 and 3).

An even simpler subdivison scheme, midedge subdivi-
sion Figure left, was exhibited and analyzed in [6]: given
an input polyhedron with not necessarily planar facets,
midedge subdivisiomonnects every edge-midpoint to the
four midpoints of the edges that share both a vertex and a
face with the current edg®©nce all midpoints are linked,
the old mesh is discarded. Since the subdivision mask con-
sists of only two points and there is only one rule regard-
less of the connectivity of the polyhedron, the subdivision
scheme is as simple as it can be. Figure 1 shows every
second subdivision step.

2 Polynomial heritage

gr" Catmull-Clark

« Extraordinary Point

Center of regular
° submesh
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Figure 4: Diamonds mark extraordinary points on the sub-
The three schemes displayed have in common that theydivision polyhedra. The centers of regular submeshes in
generate increasing regions whose points all have the samehe less refined polyhedra on tleét are marked by circles.
valence and whose facets all have the same number ofA regular submesh of the Doo-Sabin schetog)(consists
edges. A submesh of points and facets with this stan- of four quadrilaterals surrounding a vertex. A regular sub-

dard valence and number of edges is callegular Spe- mesh of the Catmull-Clark schembofton) consists of
cific subdivision rules like those of Doo and Sabin, Cat- eight quadrilaterals surrounding a quadrilateral.

mull and Clark, or midedge subdivision derive their ap-
peal from the fact that the limit surface is explicitly known
for regular meshes; the limit surfaces are respectively bi-
guadratic tensor-product spline surfaces, bicubic tensor-
product spline surfaces and surfaces formed as a linear
combination of shifts of a 4-direction piecewise quadratic
box spline. Loop’s scheme [4] generalizes a 3-direction
box spline.

To understand the heritage and implications of this reg-

ularity property, we focus on the simplest subdivision scheme.

In midedge subdivision every new non-boundary point has



That is, On a regular mesh, midedge subdivision con-
verges to a surface parametrized by shifts of the 4-direction
box-spline.

Since we know the limit surface for regular mesh re-
gions, we will in the following always combine two steps
of midedge subdivision and refer to it as a double-step.
The double-step rule is efficiently represented byrtiaesk

1
21

1/4

Figure 5: The four-direction box spline. which applies to a vertex and its two neighbors in the same
facet. Note thatin contrast to the Doo-Sabin and other sub-
division masks, the (double) midedge subdivision mask is

a b ) ' not parametrized by the valenoeof the particular point,
: : ipre Biphd but is uniform for all configurations.

_>
Zoiged  Zipie
C d - - -
3 Tangent continuity at extraordlnary
Figure 6: Four-direction box spline subdivision. points — an exam pIe

We will look at the tangent continuity at extraordinary
exactly four neighbors, and every mesh point is replaced points in the context of the simplest subdivision scheme
by a quadrilateral. A regular submesh consists therefore and summarize similar findings for the Doo-Sabin and the
of quadrilaterals and 4-valent points. Catmull Clark algorithm at the end of the section.

We want to see that midedge subdivisionrule onareg-  Since each midedge subdivision double-step replaces
ular submesh generates a piecewise quadratic surface. Tyoints and edges by quadrilaterals, the new mesh at each
this end we compare the subdivision process with the sub-step is regular except for a fixed number of increasingly
division process of a 4-direction box spline surface. separated non-four-sided mesh facets (c.f. Figure 4). We

A 4-direction box spline surface is a piecewise quadraticconsider one such facet (cf. Figure 7). At each step the
surface formed as a linear combination of the shifts of a polygon defining the facet contracts, converging towards
basis function called the Zwart-Powell element ([11],[8]). the average of the points. To confirm the existence of a
The function is shown in Figure 5; [6] describes itin terms \well-defined surface at this extraordinary point, we ana-

of the Bernstein-Bzier form. lyze the localsubdivision matrixhat mapsk layers of old

The 4-direction box spline surface is alternatively de- points surrounding the extraordinary pointkdayers of
fined by the following subdivision process (c.f. [1]At new points. For midedge subdivisi&r= 3. For almost all
each step replicate each coefficient with index) in a inputs, the eigenvalues and eigenvectors of the subdivision
new array at position§2i,2j), (2i +1,2j), (2i,2j + 1), matrix determine the smoothness of the limit surface [9].
and(2i +1,2j +1). Then average in the new array first The labeling used here is shown in Figure 8. The vec-
all entries, j withi+ 1, +1 and then all entrieis j with tor of control pointsB, that define thenth surface layer

i—1,j+1. Figure 6 shows the result of the averaging consists of blocks of 9 elements, each and the subdivi-
process: for each quadrilateral each of four new points is sjon matrixA transforms

obtained by taking A2 of one point and 24 of each of its

two neighbors. Thus two steps of the midedge subdivision Bm1 = ABp = A™ 1B,
equal one step of the 4-direction box-spline subdivision.
(see also [10] p280). The eigenvalues of the subdivision matiare real-valued



Figure 7: Union of surface layers at an extraordinary point.

Figure 8: Labeling of control points transformed by the
subdivision matrix.

and form a decreasing sequence starting with
1+ cog 2
> .

The single maximal eigenvalue 1 assures convergence to
an affinely invariant surface. To verify its smoothness, it
suffices to show that the eigenvectors corresponding to the
two subdominant eigenvaluaglefine a regular and injec-
tive map, namely the characteristic map that parametrizes
the tangent plane in the limit point. For the details see [6].

A similar analysis of the Doo-Sabin and the Catmull
Clark algorithmin [7] settled the properties of these schemes
20 years after their inception. Here is the summary.

LA A, whereh .=

e The Doo-Sabin algorithm in its general form uses
weightsa = [a°,...,a"1] for computing a new-
gon from an old one (c.f. Figure 11). Affine invari-
ance and symmetry, i.gjol =1 al =a" ) je
Zn imply that the discrete Fourier transforén=
[1,a1,62,...,62%,GY is real. IfA:=alis greater
in absolute value than the other entries except for 1
and if

1/4 <X < Amax(n)

for valueshmax(n) < 1 then the limit surface is smooth.
The bound\max(n) is computed explicitly in [7]. If
1> A > Amax(n) then the limitis a continuous, non-
smooth surface.

e The Doo-Sabin algorithm in its original form [3]
generates smooth limit surfaces.

e The Catmull-Clark algorithmin its general form uses
three weightsi, 3,y summing up to one for comput-
ing the new location of an extraordinary vertex from
its predecessor and the centers of its neighbors. If

2da — 1 /(40— 1)2 + 88 — 4|

<Cn+5++(Ch+9)(ch+1)

with ¢, := cog2m/n), then the limit surface is smooth.
If one of the both values on the left hand side ex-
ceeds the right hand side, then the limit surface is
not smooth.

e The Catmull-Clark algorithm in its original form com-
plies with the conditions and generates smooth limit
surfaces.



4 Convergence improvement at irreg-
ular points

The need for an improvement in the convergence of the
midedge subdivision is illustrated by Figure 9. The in-
put data form a cylinder by extruding a 16-gon that is
regular except that one of the vertices has been moved
above the plane to form a peak. Convergence of the cen-
tral 16-edge facet is slow. The subdominant eigenvalue
A = (1+cog%}))/2 ~ .962 implies that the distance of

a vertex to the centroid of the facet shrinks by less than
4%. Conversely the convergence at the peak is so fast
that it seems pointed. This fast convergence of triangu-
lar facets is already apparent in Figure 1 where the central
triangle shrinks almost to a point in just 2 double-steps.
To even out the speed of convergence, we modify the sub-
division mask (averaging weights for creating new mesh
points from old ones) fon-sided facets to have weights

no .2 _ -1
aj= 2.202"c05(1|%[) wheren:= {nTJ
1=
Figure 9: Fast convergence of the midedge subdivision for

resulting in eigenvalues 3-sided facets and slow convergence for large facets.

G =0n = 24, i=0.n

with &> = 0 for n even, consistent with the regular case.
The improved convergence is illustrated by three exam-
ples of modified midedge subdivision in Figure 12. To
distribute the change of normal and keep some features
sharp, we parametrize the mask in the first subdivision
double-step only as follows (cf. [5]):

1-y

\2/ 1y YeE051].

2
In the extreme case, settiyg= 1 at a vertex results in a
sharp point and setting = 1 for the two vertices of an .é\
edge results in a sharp edge. Conversely, sejtin@.5 at //4"@%\

£ N

a point, smoothes maximally. The checker pattern on the ///"A“N AN

objects in Figure 12 highlights individual triangles on the llll,"n““\\\\l\“““‘ "‘!y(.’.’,’,'llll’g’,’,’,’,'{,:l:'g’,lﬂ""““““‘nl‘nl\l\‘\“““ﬁ‘i“\l‘,‘,‘ﬁ);l"
i gt
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A simple interpolatory subdivision scheme for quadrilateral nets
with arbitrary topology is presented which generate’s shirfaces
in the limit. The scheme satisfies important requirements for prac-

Interpolatory Subdivison for Quad-Meshes

are either non-interpolatory or defined wimangular nets which is
not appropriate for some engineering applications.
The scheme which we present here istationary refinement

tical applications in computer graphics and engineering. These re- schemd9], [3], i.e., the rules to compute the positions of the new
quirements include the necessity to generate smooth surfaces withpoints use simple affine combinations of points from the unrefined
local creases and cusps. The scheme can be applied to open netsiet. The ternstationaryimplies that these rules are the same on
in which case it generates boundary curves that allow’gdin of every refinement Ie_veI. They are derl\_/ed froma mo_dlflcatlon of the
several subdivision patches. Due to the local support of the scheme,Well-known four-point scheme [6]. This scheme refines polgons by
adaptive refinement strategies can be applied. We present a simpIeS L (pi) = (pj) with
device to preserve the consistency of such adaptively refined nets. o b

2i i

8+w
16

where 0< w < 2(v/5— 1) is sufficient to ensure convergence to a

smooth limiting curve [8]. The standard valueuis= 1 for which

the scheme has cubic precision. In order to minimize the number of

special cases, we restrict ourselves to the refinement of quadrilateral

nets. The faces are split as shown in Fig. 10 and hence, to complete

3.1 the definition of the operatd, we need rules for new points corre-
sponding to edges and/or faces of the unrefined net. To generalize

The problem we address in this paper is the generation of smooththe algorithm for interpolating arbitrary nets, a precomputing step
interpolating surfaces of arbitrary topological type in the context of s needed (cf. Sect. 3.2).

practical applications. Such applications range from the design of
free-form surfaces and scattered data interpolation to high quality
rendering and mesh generation, e.g., in finite element analysis. The

The original paper has been published in: (11)

P; = (Pi +Pis1) — = (Pi_1+Pis2)
L. Kobbelt a+t 16
Interpolatory Subdivision on Open Quadri-
lateral Nets with Arbitrary Topology
Computer Graphics Forum 15 (1996), Eu-

rographics '96 issue, pp. 409-420

Introduction

standard set-up for this problem is usually given in a form equiva-
lent to the following:

A net N= (V,F) representing the input is to be mapped tea
fined net N= (V',F’) which is required to be a sufficiently close
approximation of a smooth surface. In this notation the ¥etsd
V' contain thedata pointsp;, p; € R3 of the input or output respec-
tively. The sets= andF’ represent théopological informationof
the nets. The elements BfandF’ are finite sequences of points
s CV ors, C V' each of which enumerates the corners of one not
necessarily plandaceof a net.

If all elementss, € F have length four thel is called aquadri-
lateral net To achieve interpolation of the given data,c V' is

required. Due to the geometric background of the problem we as-

sumeN to befeasible i.e., at each poinp; there exists a plang
such that the projection of the faces meeting;adnto T is injec-
tive. A net isclosedif every edge is part of exactly two faces. In
opennets, boundary edges occur which belong to one face only.
There are two major ‘schools’ for computimg from a givenN.
The first or classic way of doing this is to explicitely find a collec-
tion of local (piecewise polynomial) parametrizatiopatche}cor-
responding to the faces bf. If these patches smoothly join at com-
mon boundaries they form an overall smooth patch complex. The
netN' is then obtained by sampling each patch on a sufficiently fine
grid. The most important step in this approach is to find smoothly
joining patches which represent a surface of arbitrary topology. A
lot of work has been done in this field, e.qg., [16], [15], [17] ...
Another way to generatll’ is to define arefinement operator
S which directly maps nets to nets without constructing an explicit

Figure 10: The refinement operator splits one quadrilateral face into
four. The new vertices can be associated with the edges and faces
of the unrefined net. All new vertices have valency four.

The major advantages that this scheme offers, are that it has the
interpolation propertyand works on quadrilateral nets. This seems
to be most appropriate for engineering applications (compared to
non-interpolatory schemes or triangular nets), e.g., in finite element
analysis since quadrilateral (bilinear) elements are less stiff than tri-
angular (linear) elements [19]. The scheme provides the maximum
flexibility since it can be applied topennets witharbitrary topol-
ogy. It produces smooth surfaces and yields the possibility to gener-
ate local creases and cusps. Since the support of the scheme is local,
adaptive refinement strategies can be applied. We present a tech-
nique to keep adaptively refined né&$-consistent (cf. Sect. 3.6)
and shortly describe an appropriate data structure for the implemen-
tation of the algorithm.

parametrization of a surface. Such an operator performs both, a

topological refinement of the net by splitting the faces andea
ometricrefinement by determining the position of the new points
in order to reduce the angles between adjacent fagasdthing.

By iteratively applyingS one produces a sequence of ntsvith

No =N andNi;1 = SN. If § has certain properties then the se-
quenceS' N converges to a smooth limiting surface and we can set
N’ := SKN for some sufficiently largé. Algorithms of this kind

are proposed in [2], [4], [14], [7], [10], and [11]. All these schemes

3.2 Precomputing: Conversion to Quadrilateral
Nets

It is a fairly simple task to convert a given arbitrary rétinto a
quadrilateral neN. One straightforward solution is to apply one
single Catmull-Clark-typesplit C [2] to every face (cf. Fig. 11).
This split operation divides everysided face into quadrilaterals
and needs the position of newly computiede-pointsand edge-
pointsto be well-defined. The vertices &f remain unchanged.



The number of faces in the modified Métequals the sum of the
lengths of all sequenceg € F.

The number of faces in the quadrilateralized Netan be re-
duced by half if the netN is closed, by not applyindC but
rather its (topological) square roefC, i.e., a refinement operator
whose double application is equivalent to one applicatio@ ¢df.
Fig. 11). For this split, only neviace-pointshave to be computed. ©
For open nets, the/C-split modifies the boundary polygon in a
non-intuitive way. Hence, one would have to handle several special Figure 13: Subdivision masks for regular regions with- -8,
cases with boundary triangles if one is interested in a well-behaved B =89 ando = a2, p=a, v = B2
boundary curve of the resulting surface. 16 =anp=apv=p-

Edge-point Face-Point:

—E——0

3.3 Subdivision Rules for Closed Nets with Arbi- for computing the edge-points. However, once all the edge-points
trary Topology are known, there always are exactly two possibilities to choose four

The topological structure of any quadrilateral net after several ap- ;:k?nsett:gtlve eéllgle{poulwtft\_Nhen_comptutlr;g a cer:alnfftace-pomt chte
plications of a uniform refinement operator consists of large regu- ine IS quadri alera ot I?ha?tl)mtrl)wor an .B.rlc.iperﬁ' od tenf’r?r produc
lar regions with isolated singularities which correspond to the non- scl emes on reguiar nets af_ oth possibiliies eal Od e samedre-
regular vertices of the initial net (cf. Fig. 12). Bgpological reg- su th(commutlng gnlvarlar\]nt re |ne|r_n(|ant operat_c;)rls). rr:_lor erto rFO. )
ularity we mean a tensor product structure with four faces meeting . ¢ gtenscl)_r pgi ijct s¢ em_ehas g_te as possll € while generalizing
at every vertex. The natural way to define refinement operators for Itto be applicable for nets with arbitrary topology, we want to con-

quadrilateral nets is therefore to modify a tensor product scheme \?Virl\éi tcr)]rle pr:gggg))r/{egggi(t:i%n\;\llerxllgl' ?ﬁngnsg fgrséjc?r?wlvlljstli(r)ln Z(éheer_ne
such that special rules for the vicinity of non-regular vertices are y : puting edg

found. In this paper we will use the interpolatory four-point scheme points corresponding to edges adjacent to a non-regular vertex. All

[6] in its tensor product version as the basis for the modification. ~ 2tNer edge-points and all face-points are computed by the applica-
tion of the original four-point scheme and the additional rule will be

such that both possibilities for the face-points yield the same result.
We use the notation of Fig. 14 for points in the neighborhood of

t{i& a singular vertey. The index is taken to bemodulo nwheren is

T H the number of edges meetingmtApplying the original four-point
HHHH rule wherever possible leaves only the poigtandy; undefined.
mEEN If we require that both possible ways to computéy applying the
standard four-point rule to succeeding edge-points lead to the same
result, we get a dependence relatifqg; to x;

7
Il/ T vV
== Xit1 = Xi + 8 (hi—hijt1)+

8(4+w)

(Ki—2 —Kiy2)+

. . L ) w
Figure 12: Isolated singularities in the refined net. 8

4+w
(2 —lica) + 5= (g — i),
Consider a portion of a regular quadrilateral net with vertices which can be considered as compatibility condition. In the regular
pi,j- The vertices can be indexed locally such that each face is rep-case, this condition is satisfied for any tensor product rule. The
resented by a sequensgj = {pi j,Pi+1,j,Pi+1,j+1,Pij+1}. The compatibility uniquely defines the cyclic differencés; = i1 —
points pi”j of the refined net can be classified into three disjunct x; which sum to zerotélescoping sumsHence, there always exists

groups. Thevertex-pointl; ,; == pi,; are fixed due to the interpo- a solution and even one degree of freedom is left for the definition

. . . f thex;.
lation requirement. Thedge-pointy, ; ,; andpy; 54 are com- ot thex;

puted by applying the four-point rule (11) in the corresponding grid
direction, e.g., hi

8+w w
Poit12] = T(pi,i‘l‘le,i)_E(pifl,j+pi+2,i)~ (12)

k| I Ki-1
1
Finally, the face-points p); +12j41 are computed by apply-
ing the four-point rule to either four consecutive edge-points I oyi X, Ii— 1
Poi1.2j-20- -+ P2i412j+4 OF OP% o011, Poia )41 THE re- i+1 P

sulting weight coefficient masks for these rules are shown in )ﬁ_'_ k
Fig. 13. The symmetry of théacemask proves the equivalence +1 i-2
of both alternatives to compute the face-points. From the differen- |

tiability of the limiting curves generated by the four-point scheme, i+2

the smoothness of the limiting surfaces generated by infinitely re- lﬁ+1 k

fining a regular quadrilateral net, follows immediately. This is a i+2

simple tensor product argument.

For the refinement of irregular quadrilateral nets, i.e., nets which
include some vertices where other than four faces meet, a consistent ) ] )
indexing which allows the application of the above rules is impos- ~ The pointsx; will be computed by rotated versions of the same
sible. If other than four edges meet at one vertex, it is not clear how subdivision mask. Thus, the vicinity @f will become more and
to choose the four points to which one can apply the above rule More symmetric while refinement proceeds. Hence, the distance

Figure 14: Notation for vertices around a singular veRex



N CN vCN

Figure 11: Transformation of an arbitrary fétinto a quadrilateral ne\l by one Catmull-Clark-spli€ (middle) or by its square root (right,
for closed nets).

betweenp and the center of gravity of thg will be a good mea- applied. In the regular regions of the net (which enlarge during re-
sure for the roughness of the net npagind the rate by which this  finement), the smoothness of the limiting surface immediately fol-
distance tends to zero can be understood as the ‘smoothing rate’lows from the smoothness of the curves generated by the univariate

The center of gravity in the regulan & 4) case is: four-point scheme. Hence to complete the convergence analysis,
it is sufficient to look at the vicinities of the finitely many isolated
1"l 44w 1t ownt singular vertices (cf. Fig. 12).
n iZ)Xi =g P+, iZ)“ ~8n izo hi. (13) Letpg, ..., pk be the points from a fixed neighborhood of the sin-

gular vertexpg. The size of the considered neighborhood depends
on the support of the underlying tensor product scheme and con-

In the non-regular case, we have ; UL . .
tains 5 ‘rings’ of faces aroungg in our case. The collection of

1 =1 1 n=2 all rules to compute the new poingg, .. ., pj of the same ‘scaled’
n ZOXi = Xj+ N Zo(n— 1-1) AXiyj, (5-layer-) neighborhood qdp = pj, in the refined net can be repre-
i= i= (14) sented by a block-circulant matri such thatp; )i = A (p;);. This

matrix is called theefinement matrixAfter [1] and [18] the conver-
gence analysis can be reduced to the analysis of the eigenstructure
of A. For the limiting surface to have a unique tangent plargat

je{0,...,n—1}.

Combining common terms in the telescoping sum and equating the

right hand sides of (13) and (14) leads to it is sufficient that the leading eigenvaluesfokatisfy
4 4 M=11>A=2As [N >Ai|,Vi>4
Xj:fvgvthr%vth%vpf\ng, (15) I

Table 2 shows theses eigenvalues of the refinement nfafaxver-
where we define theirtual point tices withn adjacent edges in the standard case 1. The compu-
tation of the spectrum can be done by exploiting the block-circulant

4n-1 structure ofA. We omit the details here, because the dimension of
V= Z)li*(lj—l+|j+|j+1)+ Aisk x kwith k = 30n+ 1.
1=
W . ik Ln][A [ A [ As [ Ai>a< |
arw izt K ki) (16) 3 L0 | 0.42633] 0.42633] 0.25
41 10| 05 0.5 0.25
4w n’lk_ 51 1.0 | 0.53794| 0.53794| 0.36193
m i;) I 6 || 1.0 | 0.55968| 0.55968| 0.42633
B 7] 1.0 | 0.5732 | 0.5732 | 0.46972
Hence, thex; can be computed by applying (11) to the four points 8 ]| 1.0 | 0.58213| 0.58213| 0.5
hj,1j, pandv;. The formula also holds in the case- 4 wherev; = 9 ][ 1.0 ] 0.58834| 0.58834| 0.52180

lj+2. Such a virtual point; is defined for every edge and both of

its endpoints. Hence to refine an edge which connects two singular Table 2: Leading eigenvalues of the subdivision matrix

verticesp; andpo, we first compute the two virtual pointg and

vz and then apply (11) te, p1, p2 andvs. If all edge-points¢; are

known, the refinement operation can be completed by computing |, aqgition to a uniquely defined tangent plane we also have to

the face-pointy;. These are well defined since the auxillary edge- 5,6 ocal injectivity in order to guarantee the regularity of the sur-

point rule is constructed such that both possible ways lead to the ¢yce This can be checked by looking at the natural parametrization

same result. of the surface app which is spanned by the eigenvectorstotor-
responding to the subdominant eigenvaldgesandAs. The injec-

3.4 Convergence Analysis tivity of this parametrization is a sufficient condition. The details

o ) o . can be found in [18]. Fig. 15 shows meshes of ‘isolines’ of these
The subdivision scheme proposed in the last section is a station-characteristic maps which are well-behaved.

ary scheme and thus the convergence criteria of [1] and [18] can be
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Figure 15: Sketch of the characteristic maps in the neighborhood of singular vertices=wal®b, ..., 9.

P, PA is defined analogously.

it bdivisi h . diob di ical mod This modification of the original scheme does not affect the con-
a subdivision scheme Is supposed to be used In practical mod-y,a gence to a continuously differentiable limit, because the esti-

eling or reconstruction applications, it must provide features that ates for the contraction rate of the maximum second forward dif-

allow the definition of creases and cusps [12]. These requirementSgarence ysed in the convergence proof of [6] remain valid. This

can be satisfied if the scheme includes special rules for the refine-is gphvious since the extrapolation only adds the zero component

ment ofopennets which yield well-behaved boundary curves that > :

: . : A“pM. to the sequence of second order forward differences. The

interpolate the boundary polygons of the given net. Having such mai?féonvergenge criterion of [13] also applies.

a scheme, creases can be modeled by joining two separate sub- It remains to define refinement rules for inner edges of the net

gallltsflfonmsgriécilsoailgglgh?)lgoimmgninti)t(i);lnr? eatr)\;w(]:it::ri;/e : c?rﬂ e(ilrjiigﬁ '€ Wwhich have one endpoint on the boundary and for faces including
polog 9 Y atleast one boundary vertex. To obtain these rules we use the same

3.5 Boundary Curves

locationp; = p (cf. Fig. 16). When computing the egde- and face-points refining the original net
that their limiting boundary curves only depend on these common qeted.
four-point rule to boundary polygons. Thus, the boundary curve L

ssary pTi=2p—— _;qi.
only generatsmoothboundary curves but rather to allgiecewise =
cut the boundary polygon into several segments by marking someFor every boundary edgeq we add the extrapolated fact =
polygon. face can be proved by the sufficient criteria of [1] and [18]. This
(11) requires a well-defined 2-neighborhood. Therefore, we have be rewritten as a set of stationary refinement rules which define
pg'PT. We define arextrapolatedpoint p™, := 2pg' — pf". The no longer block-circulant.

shrinks to a single point, i.e., a fase= {p1,...,pn} of a given net o : P -

; . o euristic as in the univariate case. We extrapolate the unrefined

is deleted to generate a hole and its vertices are moved to the sam et over every boundary edge to get an additional layer of faces.

0 . . PR ..

. I-Iro allow ac -jhom between two subdivision lpatche_s whose ini- p the rules from Sect. 3.3, these additional points can be used.

tially given nets have a common boundary polygon, it is necessary 1 complete the refinement step, the extrapolated faces are finally

pori1nts, i.e., the%/_ musth_nott) de_penld on ?ny in;}erior_ poinlt. Forour ) ot q; .. g be theinner points of the net which are connected

scheme, we achieve this by simply applying the original univariate , \he poundary poinp then the extrapolated point will be

of the limiting surface is exactly the four-point curve which is de-

fined by the initial boundary polygon. Further, it is necessary to not

smooth boundary curves, e.g., in cases where more than two subdf the boundary poinp belongs to the face= {p,q,u,v} and is

division patches meet at a common point. In this case we have tonot connected to any inner vertex then we defirie= 2p — u.

vertices on the boundary as beiogrner vertices Each segment {p,q,9",p*}.

between two corner vertices is then treated separately as an open Again, the tangent-plane continuity of the resulting limiting sur-
When dealing with open polygons, it is not possible to refine the is obvious since for a fixed number of interior edges adjacent to

first or the last edge by the original four-point scheme since rule some boundary vertgx, the refinement of the extrapolated net can

to find another rule for the poir** which subdivides the edge  the new points in the vicinity op as linear combinations of points

from the non-extrapolated net. However the refinement matrix is
point p'l“Jrl then results from the application of (11) to the sub-
polygonp™,, pg', pT', p3". Obviously, this additional rule can be ex-

At every surface point lying on the boundary of a tangent plane
continuous surface, one tangent direction is determined by the tan-

pressed as a stationary linear combination of points from the non- gent of the boundary curve (which in this case is a four-point curve

extrapolated open polygon:
_ 8w, 8+2w o, w4
16 P17 16P2

= 16 Po
The rule to compute the poirpg}]tll subdividing the last edge

m1 .

P71 a7

that does not depend on inner vertices). On boundaries, we can
therefore drop the requirement of [18] that the leading eigenval-
ues of the refinement matrix have to be equal. This symmetry
is only a consequence of the assumption that the rules to com-
pute the new points around a singular vertex are identical modulo
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Figure 16: Modeling sharp features (piecewise smooth boundary, crease, cusp)

rotations (block-circulant refinement matrix). Althoudh # A3 gions with high curvature while ‘flat’ regions may be approximated
causes an increasing local distortion of the net, the smoothness ofrather coarsely. Hence, in order to keep the amount of data reason-
the limiting surface is not affected. This effect can be viewed as able, the next step is to introduce adaptive refinement features.
a reparametrization in one direction. (Compare this to the distor- The decisionwhere high resolution refinement is needed,
tion of a regular net which is refined by binary subdivision in one strongly depends on the underlying application and is not discussed
direction and trinary in the other.) here. The major problem one always has to deal with when adap-
We summarize the different special cases which occur when re- tive refinement of nets is performed is to handle or elimii@ité-
fining an open net by the given rules. In Fig. 17 the net to be refined inconsistencies which occur when faces from different refinement
consists of the solid white faces while the extrapolated faces are levels meet. A simple trick to repair the resulting triangular holes
drawn transparently. The dark vertex is marked as a corner vertex.is to split the bigger face into three quadrilaterals in an Y-fashion
We have to distinguish five different cases: (cf. Fig 18). However this Y-split does not repair the hole. Instead
it shifts the hole to an adjacent edge. Only combining several Y-
elements such that they build a ‘chain’ connecting two inconsisten-
cies leads to an overall consistent net. The new vertices necessary
for the Y-splits are computed by the rules of Sect. 3.3. The fact
that every Y-element contains a singular=£ 3) vertex causes no
problems for further refinement because this Y-element is only of
temporary nature, i.e., if any of its three faces or any neighboring
face is to be split by a following local refinement adaption, then first
the Y-split is undone and a proper Catmull-Clark-type split is per-
formed before proceeding. While this simple technique seems to
be known in the engineering community, the author is not aware of
any reference where the theoretical background for this technique
is derived. Thus, we sketch a simple proof that shows under which
conditions this technique applies.

Figure 17: Occurences of the different special cases. P

A: Within boundary segments, we apply (11) to four succeeding
boundary vertices.

B: To the first and the last edge of an open boundary segment, we
apply the special rule (17).

C: Inner edge-points can be computed by application of (15).
necessary, extrapolated points are involved.

D: For every face-point of this class, at least one sequence of four  gjret in order to apply the Y-technique we have to restrict the
C-points can be found to which (11) can be applied. If there are ;qnqjgered nets toalancednets. These are adaptively refined nets
two possibilities for the choice of these points then both lead to the (yithout Y-elements) where the refinement levels of neighboring
same result which is guaranteed by the construction of (15). faces differ at most by one. Non-balanced inconsistencies can not
E: In this case no appropriate sequence of four C-points can be be handled by the Y-technique. Hence, looking at a particular face
found. Therefore, one has to apply (17) to a B-point and the two C- sfrom then-th refinement level, all faces having at least one vertex
points following on the opposite side of the corner face. In order to in common withs are from the levelgn— 1), n, or (n+1). For
achieve independence of the grid direction, even in case the cornerthe proof we can think of first repairing all inconsistencies between
vertex is not marked, we apply (17) in both directions and compute leveln— 1 andn and then proceed with higher levels. Thus, without
the average of the two results. loss of generality, we can restrict our considerations to a situation
where all relevant faces are from leyel— 1) or n.
3.6 Adaptive Refinement A critical edge is an edge, Whe_re a triangular hole occurs due
to different refinement levels of adjacent faces. A sequence of Y-
In most numerical applications, the exponentially increasing num- elements can always be arranged such that two critical edges are
ber of vertices and faces during the iterative refinement only allows connected, e.g., by surrounding one endpoint of the critical edge
a small number of refinement steps to be computed. If high acuracywith a 'corona’ of Y-elements until another critical edge is reached
is needed, e.g., in finite element analysis or high quality rendering, (cf. Fig. 19). Hence, on closed nets, we have to require the number
it is usually sufficient to perform a high resolution refinement in re- of critical edges to be even. (On open nets, any boundary edge can

if Figure 18: A hole in an adaptively refined net and an Y-element to
fill it.



stop a chain of Y-elements.) We show that this is always satisfied, FacedTyp Face9Typ Face4dTyp
by induction over the number of faces from theh level within

an environment ofn— 1)-faces. Faces from generationsn or

< (n—1) do not affect the situation since we assume the net to be
balanced.

Figure 21: References between different kinds of faces.

oriented as shown in Fig. 20 and if both are marked this face has to
be refined by a proper Catmull-Clark-type split.
The correctness of this algorithm is obvious since the vertices
which are marked in the first phase are those which are common to
The first adaptive Catmull-Clark-type split on a uniformly re-  faces of different levels. The second phase guarantees that a corona
fined net produces four critical edges. Every succeeding split of Y-elements is built around each such vertex (cf. Fig. 19).
changes the number of critical edges by an even number between
—4 and 4, depending on the number of direct neighbors that have .
been split before. Thus the number of critical edges is always even.3-7  Implementation and Examples

However, then-faces might form a ring having in total an even The described algorithm is designed to be useful in practical ap-
number of critical edges which are separated into an odd number pjications. Therefore, besides the features for creating creases and
inside’ and an odd number ‘outside’. It turns out that this can-  cysps and the ability to adaptively refine a given quadrilateral net,
not happen: Let the inner region surrounded by the ring-faices efficiency and compact implementation are also important. Both
consist ofr quadrilaterals having a total number afédges which = ¢an pe achieved by this algorithm. The crucial point of the im-
are candidates for being critical. Every edge which is shared by plementation is the design of an appropriate data structure which
two such quadrilaterals reduces the number of candidates by twogpports an efficient navigation through the neighborhood of the
and thus the number of boundary edges of this inner region is againyertices. The most frequently needed access operation to the data
even. L _ ) structure representing the balanced net, is to enumerate all faces
The only situation where the above argument is not valid, occurs yhich fie around one vertex or to enumerate all the neighbors of
when the considered net is open and has a hole with an odd numbegne vertex. Thus every vertex should be associated with a linked
of boundary edges. In this case, every loomdaces enclosing |ist of the objects that constitute its vicinity. We propose to do this
this hole will have an odd number of critical edges on each side. jmpjicitely by storing the topological information in a data struc-
Hence, we have to further restrict the class of nets to which we y,re Face4Typ which contains all the information of one quadri-
can apply the Y-technique topen balanced nets which have no  |aterg| face, i.e., references to its four corner points and references
hole with an odd number of edgeShis restriction is not serious g jts four directly neighboring faces. By these references, a doubly
because one can transform any given net in order to satisfy this |inked list around every vertex is available.
requirement by applying amitial uniform refinement stepefore Since we have to maintain an adaptively refined net, we need
adaptive refinement is started. Such an initial step is needed anyway,n aqditional datatype to consistently store connections between
if a given arbitrary net has to be transformed into a quadrilateral one t5ces from different refinement levels. We define another struc-
(cf. Sect. 3.2). . ture Face9Typ which holds references to nine vertices and eight
It remains to find arelgorithm to place the Y-elements cor-  neighbors. Thesenulti-facescan be considered as ‘almost’ split
rectly, i.e., to decide which critical edges should be connected by taces, where the geometric information (the new edge- and face-
a corona. This problem is npt tr|V|a! becausl_e |nterfference between points) is already computed but the topological split has not yet
the Y-elements building the ‘shores’ of two ‘islands’mfaces ly- ~ heen performed. If, during adaptive refinement, sawface is
ing close to each other, can occur. We describe an algorithm which gpjit then all its neighbors which are from the same generation are
only uses Iocal information anq decides the orientation separately converted intoFace9Typ ’s. Since these faces have pointers to
for each face instead of ‘marching’ around the islands. eight neighbors, they can mimic faces from different generations
The initially given net (level 0) has_ been uniformly refined once 54 therefore connect them correctly. TRece9Typ 's are the
before the adaptive refinement begins (level 1). Let every vertex cangidates for the placement of Y-elements in order to re-establish
of the adaptively refined net be associated with the generation in consistency. The various references between the different kinds of
which it was introduced. Since all faces of the net are the result ¢5ces are shown in Fig. 21.
of a Catmull-Clark-type split (no Y-elements have been placed S0 T rgjieve the application program which decides where to adap-
far), they all have the property that three of its vertices belong to tyely refine, from keeping track of the balance of the net, the im-
the same generatianand the fourth vertex belongs to a generation - pementation of the refinement algorithm should perform recursive
g<g This fact yields a unigue orientation for every face. The (efinement operations when necessary, i.e.ifacesis to be re-
algorithm starts by marking all vertices of the net which are end- fined then first alfn— 1)-neighbors which have at least one vertex
points of a critical edge, i.e. if tn—1)-face{p,q,...} meets two in common withs must be split.
nfaces{p,r,s,...}; and{q,r,s,...} thenp andq are marked (cf. The following pictures are generated by using our experimen-
Fig. 18). After themarking-phasgthe Y-elements are placed. Let 5] implementation. The criterion for adaptive refinement is a dis-
s={p,q,u,v} be a face of the net whegis the unique vertex crete approximation of the Gaussian curvature. The running time
which belongs to an elder generation than the other three. _If neltherof the algorithm is directly proportional to the number of computed
g norv are marked then no Y-element has to be placed within this points, i.e., to the complexity of the output-net. Hence, since the
face. If only one of them is marked then the Y-element has to be ,ymper of regions where deep refinement is necessary usually is

Figure 19: Combination of Y-elements



Figure 20: The orientation of the Y-elements depends on whether the veycels are marked (black) or not (white). The status of vertices

p andu does not matter (gray).

fixed, we can reduce the space- and time-complexity from expo- [15] C. Loop,A G! triangular spline surface of arbitrary topolog-

nential to linear (as a function of the highest occurring refinement
level in the output).
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arbitrary topology sting and across a contiious range of scales

Abstract
. . . . and hardware resources.
We describe a multiresolution representation for meshes based on

subdivision, which is a natural extension of the existing patch-based
surface representations. Combining subdivision and the smooth-

ing algorithms of Taubin [26] allows us to construct a set of algo-
rithms for interactive multiresolution editing of complex hierarchi-
cal meshes of arbitrary topology. The simplicity of the underly-

ing algorithms for refinement and coarsification enables us to make

them local and adaptive, thereby considerably improving their effi-
ciency. We have built a scalable interactive multiresolution editing
system based on such algorithms.

1 Introduction

Applications such as special effects and animation require creation

and manipulation of complex geometric models of arbitrary topol-
ogy. Like real world geometry, these models often carry detail at

many scales (cf. Fig. 1). The model might be constructed from .

scratch (ab initio design) in an interactive modeling environment or
be scanned-in either by hand or with automatic digitizinghods.
The latter is a common source of data particularly in the entertain-

ment industry. When using laser range scanners, for example, indi-

vidual models are often composed of high resolution meshes with
hundreds of thousands tallions of triangles.
Manipulating such fine meshes can be difficult, especially when

Figure 1: Before the Armadillo started working out he was flabby,
complete with a double chin. Now he exercises regularly. The orig-
inal is on the right (courtesy Venkat Krischnamurthy). The edited
version on the left illustrates large scale edits, such as his belly, and
smaller scale edits such as his double chin; all edits were performed
at about 5 frames per second on an Indigo R10000 Solid Impact.

For reasons of efficiency the algorithms should be highly adap-
tive and dynamically adjust to available resources. Our goal is to
have a single, simple, uniform representation with scalable algo-

they are to be edited or animated. Interactivity, which is crucial in (ithms. The system should be capable of deliveringtiple frames

these cases, is challenging to achieve. Even without accounting forper second update rates even on small workstations taking advan-
any computation on the mesh itself, available rendering resourcesiage of lower resolution representations.

alone, may not be able to cope with the sheer size of the data. Pos-
sible approaches include mesh optimization [15, 13] to reduce the jjog

size of the meshes.
Aside from considerations of economy, the choice of represen-
tation is also guided by the need for multiresolution editing se-

mantics. The representation of the mesh needs to provide con- e
trol at a large scale, so that one can change the mesh in a broad,

smooth manner, for example. Additionally designers will typi-

cally also want control over the minute features of the model (cf.
Fig. 1). Smoother approximations can be built through the use of
patches [14], though at the cost of loosing the high frequency de-
tails. Such detail can be reintroduced by combining patches with
displacement maps [17]. However, this is difficult to manage in the

*dzorin@gg.caltech.edu
tps@cs.caltech.edu
twim@bell-labs.com

In this paper we present a system which possesses these proper-

e Multiresolution control: Both broad and general handles, as
well as small knobs to tweak minute detail are available.

Speed/fidelity tradeoff: All algorithms dynamically adapt to
available resources to maintain interactivity.

¢ Simplicity/uniformity: A single primitive, triangular mesh, is

used to represent the surface across all levels of resolution.

Our system is inspired by a number of earlier approaches. We
mention multiresolution editing [11, 9, 12], arbitragpblogy sub-
division [6, 2, 19, 7, 28, 16], wavelet representations [21, 24, 8, 3],
and mesh simplification [13, 17]. Independently an approach simi-
lar to ours was developed by Pulli and Lounsbery [23].

It should be noted that our methods rely on the finest level mesh
having subdivision connectivity. This requires a remeshing step be-
fore external high resolution geometry can be imported into the ed-
itor. Eck et al. [8] have described a possible approach to remeshing
arbitrary finest level input meshes fully automatically. A method
that relies on a user's expertise was developed by Krishnamurthy
and Levoy [17].

1.1 Earlier Editing Approaches

H-splines were presented in pioneering work on hierarchical

editing by Forsey and Bartels [11]. Briefly, H-splines are obtained
by adding finer resolution B-splines onto an existing coarser resolu-
tion B-spline patch relative to the coordinate frame induced by the



coarser patch. Repeating this process, one can build very compli- As more fine level detail is needed the proliferation of control
cated shapes which are entirely parameterized over the unit squarepoints and patches can quickly overwhelm both the user and the
Forsey and Bartels observed that the hierarchy induced coordinatemost powerful hardware. With detail at finer levels, patches become
frame for the offsets is essential to achieve correct editing seman-less suited and polygonal meshes are more appropriate.

tics. .
. . . . Polygonal Meshes  can represent arbitrary topology and re-
H-splines provide a uniform framework for representing both the gque fine detail as found in laser scanned models, for example.
coarse and fine level details. Note however, that as more detail Gjyen that most hardware rendering ultimately resolves to triangle
is added to such a model the internal control mesh data structuresg.,,_conversion even for patches, polygonal meshes are a very ba-
mci/r\t/ehg}nd rr}nc_;re r_es_err;ple a| fine polyhedrﬁll mec?h. Wt lar  SiC primitive. Because of sheer size, polygonal meshes are difficult
lle their original implementation allowed only for regular , anipylate interactively. Mesh simplification algorithms [13]
topologies their approach could be extended to the gendtaigse 1 q\ide one possible answer. However, we need a mesh simpli-

by using surface sp;llines or one of the spline derived general topol- ¢i-ation approach, that is hierarchical and gives us shape handles
ogy subdivision schemes [18]. However, these schemes have N0k, smooth changes over larger regions while maintaining high fre-
yet been made to work adaptively. quency details.

Forsey and Bartels' original work focused on the ab initio de-
sign setting. There the user's help is enlisted in defining what is
meant by different levels of resolution. The user decides where to
add detail and manipulates the corresponding controls. This way
the levels of the hierarchy are hand built by a human user and the
representation of the final object is a function of its editing history.

To edit an a priori given model it is crucial to have a general pro-
cedure to define coarser levels and compute details between levels.
We refer to this as thanalysisalgorithm. An H-spline analysis al-

Patches and fine polygonal meshes represent two ends of a spec-
trum. Patches efficiently describe large smooth sections of a surface
but cannot model fine detail very well. Polygonal meshes are good
at describing very fine detail accurately using dense meshes, but do
not provide coarser manipulation semantics.

Subdivisiorconnects and unifies these two extremes.

\
‘v

) . ; SIS
gorithm based on weighted least squares was introduced [10], but /‘(ﬁﬁ“
is too expensive to run interactively. Note that even in an ab initio fl?‘ﬂ}
design setting online analysis is needed, since after a long sequence %\

of editing steps the H-spline is likely to be overly refined and needs
to be consolidated.

Wavelets provide a framework in which to rigorously de- i 4' ‘f&‘

fine multiresolution approximations and fast analysis algorithms. f)‘y“ / A}“i\\

Finkelstein and Salesin [9], for example, used B-spline wavelets A@a‘wy“r Aﬁa’(ﬁ\}%‘y
; ] . o - . /) e

to describe multiresolution editing of curves. As in H-splines, pa- \«;‘gggw, /”%‘f;éj“'lﬂ

rameterization of details with respect to a coordinate frame induced
by the coarser level approximation is required to get correct edit-
ing semantics. Gortler and Cohen [12], pointed out that wavelet Figure 2: Subdivision describes a smooth surface as the limit of a
representations of detail tend to behave in undesirable ways duringsequence of refined polyhedra. The meshes show several levels of
editing and returned to a pure B-spline representation as used inan adaptive Loop surface generated by our system (dataset courtesy
H-splines. Hugues Hoppe, University of Washington).
Carrying these constructions over into the arbitrary topology sur-
face framework is not straightforward. In the work by Lounsbery et
al. [21] the connection between wavelets and subdivision was usedSubdivision  defines a smooth surface as the limit of a sequence
to define the different levels of resolution. The original construc- of successively refined polyhedral meshes (cf. Fig. 2). In the reg-
tions were limited to piecewise linear subdivision, but smoother ular patch based setting, for example, this sequence can be defined
constructions are possible [24, 28]. through well known knot insertion algorithms [5]. Some subdi-
An approach to surface modeling based on variational methods vision methods generalize spline based knot insertion to irregular
was proposed by Welch and Witkin [27]. An attractive character- topology control meshes [2, 6, 19] while other subdivision schemes
istic of their method is flexibility in the choice of control points.  are independent of splines and include a number of interpolating
However, they use a global optimization procedure to compute the schemes [7, 28, 16].

surface which is not suitable for interactive manipulation of com- Since subdivision provides a path from patches to meshes, it can
plex surfaces. serve as a good foundation for the unified infrastructure that we
Before we proceed to a more detailed discussion dfnedwe seek. A single representation (hierarchical polyhedral meshes) sup-
first discuss different surface representations to motivate our choiceports the patch-type semantics of manipulatiow finest level de-
of synthesis (refinement) algorithm. tail polyhedral edits equally well. The main challenge is to make
the basic algorithms fast enough to escape the exponential time and
1.2 Surface Representations space growth of naive subdivision. This is the core of our contribu-
There are many possible choices for surface representations!tion. ) ) L .
Among the most popular are polynomial patches and polygons. We summarize the main features of subdivision important in our

context

¢ Topological Generality: Vertices in a triangular (resp. quadri-
lateral) mesh need not have valence 6 (resp. 4). Generated sur-
faces are smooth everywhere, and efficient algorithms exist for
computing normals and limit positions of points on the surface.

Patches are a powerful primitive for the construction of coarse
grain, smooth models using a small number of control parameters.
Combined with hardware support relatively fast implementations
are possible. However, when building complex models with many
patches the preservation of smoothness across patch boundaries can
be quite cumbersome and expensive. These difficulties are com- ¢ Multiresolution: becausethey are the limit of successive refine-
pounded in the arbitrary topologytiag when poynomial param- ment, subdivision surfaces supportltrasolution algorithms,
eterizations cease to exist everywhere. Surface splines [4, 20, 22] such as level-of-detail rendering, multiresolution editing, com-
provide one way to address the arbitrary topology challenge. pression, wavelets, and numerical multigrid.



e Simplicity: subdivision algorithms are simple: the finer mesh m
is built through insertion of new vertices followed Mgcal
smoothing.

¢ Uniformity of Representation: subdivision provides a single

. . | o2 )
representation of a surface at all resolution levels. Boundaries
and features such as creases can be resolved through modified
rules [14, 25], reducing the need for trim curves, for example.
i
s(1)

Graph with vertices M esh with points

. |5 1 2 - g
1.3 Our Contribution % T Se) §
Aside from our perspective, which unifies the earlier approaches, -.% 3 i1 i+1 g:
our major contribution—and the main challenge in this program— =] 1 T+ s (6) s (3) 5

is the design of highly adaptive and dynamic data structures and

algorithms, which allow the system to function across a range of y N s'+(15)
computational resources from PCs to workstations, delivering as , :

much interactive fidelity as possible with a given ygin render- 7 ) 5 )

ing performance. Our algorithms work for the class of 1-ring sub- i+1
division schemes (definition see below) and we demonstrate their s (2

performance for the concrete case of Loop's subdivision scheme.

The particulars of those algorithms will be given later, but Fig. 3 Figure 4: Left: the abstract graph. Vertices and triangles are mem-
already gives a preview of how the different algorithms make up bers of setd”* andT" respectively. Their index indicates the level
the editing system. In the next sections we first talk in more detail of refinement when they first appeared. Right: the mapping to the
about subdivision, smoothing, and hingsolution transforms. mesh and its subdivision in 3-space.

|
With each set’* we associate a map, i.e., for each vereand
H each level we have a 3D point*(v) € R’. The sets' contains
all points on level, s* = {s*(v) | v € V'}. Finally, asubdivision
; - schemes a linear operata$ which takes the points from leveto

—’ points on thdinerlevel: + 1: s'T! = S s*

Assuming that the subdivision converges, we can define a limit

Select group of vertices Create dependent surfacesr as
at level i submesh o= lim S*s°
+ kE—oco ’
o(v) € R? denotes the point on the limit surface associated with
vertexv.

Local analysis L ocal synthesis In order to define our offsets with respectto a local frame we also

need tangent vectors and a normal. For the subdivision schemes
that we use, such vectors can be defined through the application of
linear operators) and R acting ons® so thatg’ (v) = (Qs*)(v)
. . ) ' andr’(v) = (Rs')(v) are linearly independent tangent vectors at
Figure 3: Thefrelat_lonshlp between various procedures as the usera(v). gl’o)geth(er wi)tgw ;n orientatign the)‘/)define a Iogal orthonormal
moves a set of vertices. frame F' (v) = (n'(v),q' (v), " (v)). It is important to note that
in general it is not necessary to use precise normals and tangents
during editing; as long as the frame vectors are affinely related to
2 Subdivision Lhehpositions of vertices of the mesh, we can expect intuitive editing
ehavior.
We begin by defining subdivision and fixing our notation. There are
2 points of view that we must distinguish. On the one hand we are
dealing with an abstragfraphand perform topological operations
on it. On the other hand we havenzeshwhich is the geometric
object in 3-space. The mesh is the image of a map defined on the
graph: it associates point in 3D with everyvertexin the graph
(cf. Fig. 4). Atriangledenotes a face in the graph or the associated
polygon in 3-space.
Initially we have a trimgular graphT™® with verticesV°. By 1-ring at level i 1-ring at level i+1
recursivelyrefiningeach triangle into 4 subtriangles we can build
a sequence of finer triangulatio’s with verticesV*, ¢ > 0
(cf. Fig. 4). The superscriptindicates thdevel of triangles and
vertices respectively. A triangle € T* is a triple of indices
t = {va, v, v} C V.

Figure 5: An even vertex has a 1-ring of neighbors at each level of
refinement (left/middle). Odd vertices—in the middle of edges—
have 1-rings around each of the vertices at either end of their edge

The vertex sets are nestedd$ C V' if j < 1. We define (right).
oddvertices on level asM* = V't \ V. V**! consists of two
disjoint sets:evenvertices {'*) andoddvertices §/*). We define Next we discuss two common subdivision schemes, both of
thelevelof a vertexv as the smallestfor whichv € V*. The level which belong to the class df-ring schemes In these schemes

ofvist+ 1ifandonlyifv € M". points at levet + 1 depend only on 1-ring neighborhoods of points



atleveli. Letv € V' (v even) then the point ! (v) is a function Because of its computational simplicity we decided to use a version
of only thoses'(vx,), v» € V*, which are immediate neighbors  of Taubin smoothing. As before let € V* have K neighbors
of v (cf. Fig. 5 lefymiddle). Ifm € M’ (m odd), it is the vertex ~ wvx € V'. Use the averagé; (v) = K~' 3. s'(vx), to define
inserted when splitting an edge of the graph; we call such vertices the discrete Laplaciafi(v) = gi(v) — Si(v), On this basis Taubin

middle verticedf edges. In this case the poisitt! (m) is a func- gives a Gaussian-like smoother which does not exhibit shrinkage
tion of the 1-rings around the vertices at the ends of the edge (cf.
Fig. 5 right). H:=IT+upL)(I+XL).
’ 1 1 With subdivision and smoothing in place, we can describe the
1 ‘ transform needed to support ttiesolution editing. Rcall that
for multiresolution editing we want the difference betweeocas-
’ 1 3 3 sive levels expressed with respect to a frame induced by the coarser
level, i.e., the offsets are relative to the smoother level.
1 g With each vertex and each level > 0 we associate detail

1 1 vector,d'(v) € R®. The setl contains all detail vectors on lev&l
d' = {d'(v) | v € V'}. Asindicated in Fig. 7 the detail vectors

. L . ] ) are defined as
Figure 6: Stencils for Loop subdivision with unnormalized weights

for even and odd vertices. d'=(F) (s =S H=(F)Y'(I-SH)s",

) ) _ o i.e., the detail vectors at levétecord how much the points at level
Loop is a non-interpolating subdivision scheme based on a gen-; differ from the result of subdividing the points at levet 1. This
eralization of quartic triangular box splines [19]. For a given even difference is then represented with respect to the local frAfi@

vertexv € V', letvy € V' with1l < k < K beits K 1- obtain coordinate independence.

ring neighbors. The new poist*!(v) is defined ass'*! (v) = Since detail vectors are sampled on the fine level nmié&stthis
(a(K) + K) ™ (a(K) s (v) + 34, s'(vx)) (cf. Fig. 6),a(K) = transformation yields an overrepresentation in the spirit of the Burt-
K(1—a(K))/a(K),anda(K) = 5/8—(3+2 cos(2r/K))? /64. Adelson Laplacian pyramid [1]. The only difference is that the
For odd e Weighis Shoun i =, © are used. Two inde T oap). Theoretcaly i ould be possibe 0 subsample he detal
per;(dent tangent vectovs(p) andtz(v) are given byt,(v) = vectors and only record a detail per odd vertexdéf—'. This is

poy €827 (k 4 p)/K) s*(on). what happens in the wavelet transform. However, subsampling the

Features such as boundaries and cusps can be accommodatefbiails severely restricts the family of smoothing operators that can
through simple modifications of the stencil weights [14, 25, 29].  pe ysed.

Butterfly is an interpolating scheme, first proposed by Dyn et ’ * 1
al. [7] in the topologically regular $éng and ecently general- - 1 s
ized to arbitrary topologies [28]. Since it is interpolating we have ’ Smoothing ‘ ’ Subdivision ‘ v

s'(v) = o(v) for v € V' even. The exact expressions for odd S 4 /J\ d.gsil T d
vertices depend on the valen&eand the reader is referred to the I\ F) —

original paper for the exact values [28].
. ) ) Figure 7: Wiring diagram of the multiresolution transform.
For our implementation we have chosen the Loop scheme, since
more performance optimizations are possible in it. However, the
algorithms we discuss later work for any 1-ring scheme.
4  Algorithms and Implementation

3 Multiresolution Transforms Before we describe the algorithms in detail let us recall the overall

So far we only discussed subdivision, i.e., how to go from coarse to structure of the mesh editor (cf. Fig 3). The analysis stage builds
fine meshes. In this section we describe analysis which goes froma succession of coarser approximations to the surface, each with

fine to coarse. fewer control parameters. Details or offsets between successive
We first needsmoothingi.e., a linear operatio/ to build a levels are also computed. In general, the coarser approximations
smooth coarse mesh at level 1 from a fine mesh at level are not visible; only their control points are rendered. These con-
‘ ‘ trol points give rise to airtual surfacewith respect to which the

sl =Hs'. remaining details are given. Figure 8 shows wireframe representa-

tions of virtual surfaces corresponding to control points on levels 0,

Several options are available here: 1, and 2.

o Least squares:One could define analysis to be optimal in the When an edit level is selected, the surface is represented inter-

least squares sense, nally as an approximation at this level, plus the set of all finer level
details. The user can freely manipulate degrees of freedom at the

min ||Si - S Si—1||2. edit level, while the finer Ieve_I details remain gnchanged relative_

sit to the coarser level. Meanwhile, the system will use the synthesis

. . . algorithm to render the modified edit level with all the finer details
The solution may have unwanted undulations and is to0 €xpen-,4qed in. In between edits, analysis enforces consistency on the
sive to compute interactively [10]. internal representation of coarser levels and details (cf. Fig. 9).

¢ Fairing: A coarse surface could be obtained as the solution to ~ The basic algorithmd#\nalysis  and Synthesis  are very
a global variational problem. This is too expensive as well. An simple and we begin with their description.
alternative is presented by Taubin [26], who usdsaal non- Let: = 0 be the coarsest and= n the finest level withV
shrinking smoothing approach. vertices. For each vertexand all levels finer than the first level



thresholds. Three thresholds control this pruniag:for adaptive
analysisg s for adaptive synthesis, anrg: for adaptive rendering.

To make lazy evaluation fast enough several caches are maintained
explicitly and the order of computations is carefully staged to avoid
recomputation.

4.1 Adaptive Analysis

The generic version of analysis traverses entire levels of the hierar-
chy starting at some finest level. Recall that the purpose of analysis
is to compute coarser approximations and detail offsets. In many
regions of a mesh, for example, if it is flat, no significant details
will be found. Adaptive analysiavoids the storage cost associated
with detail vectors below some threshelgdby observing that small
detail vectors imply that the finer level almost coincides with the
subdivided coarser level. The storage savings are realized through
tree pruning

For this purpose we need an integer.finest :=
max;{||v.d[t]]| > ea}. Initially v.finest = n and the fol-
lowing precondition holds before callirignalysis(i)

e The surface is uniformly subdivided to levigl

Figure 9: Analysis propagates the changes on finer levels to coarser® Vv € V, Posli] = s'(v),

levels, keeping the magnitude of details under control. Left: The o Yo € V' |i< j < v.finest : v.d[j] = d’(v).
initial mesh. Center: A simple edit on level 3. Right: The effect of Now Analysis(i) becomes:

the edit on level 2. A significant part of the change was absorbed
by higher level details.

Figure 8: Wireframe renderings of virtual surfaces representing the
first three levels of control points.
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Analysis( 1)
where the vertex appears, there are storage locationsg:] and
v.d[1], each with 3 floats. With this the total storage add3 03 *
(4N/3) floats. In generaly.s[i] holdss® (v) andv.d[:] holdsd® (v);
temporarily, these locations can be used to store other quantities.
The local frame is computed by callingF'(z).

Global analysis and synthesis are performed level wise:

Yo € V7! ¢ w.s[i — 1] := smooth (v, 1)
Yoe V' :
v.d[i] := v.s[i] — subd (v,7 — 1)
if wv.finest > or ||v.d[i]]| > ea then
v.dfi] = v.F(3)" * v.d[i]

else
v.finest ;= 1 — 1
Analysis Synthesis Prune( ¢ — 1)
for i=n downto 1 for i=11t n
Analysis( 1) Synthesis( 1) Triangles that do not contain details above the threshold are unre-
fined:
With the action at each level described by
Prune( 1)

Analysis( 1) vt € T : If all middle verticesm havem.finest = i — 1

and all children are leaves, delete children.

Yu € V’:_l : v.s[i — 1] := smooth (v, 1)
YoeV' :wudi] = v.F()" * (v.s[i] — subd (v, — 1))

This results in an adaptive mesh structure for the surface with

and vd[i] = d'(v) forallv € V', ¢ < v.finest. Note that the re-
sulting mesh is not restricted, i.e., two triangles that share a vertex
Synthesis( i) can differ in more than one level. Initial analysis has to be followed

by a synthesis pass which enforces restriction.
Yo € V' @ s.ofi] := v.F(i) * v.d[i] + subd (v,i — 1)

4.2 Adaptive Synthesis

The main purpose of the general synthesis algorithm is to rebuild

Analysis computes points on the coarser level1 using smooth- the finest level of a mesh from its hierarchical representation. Just
ing (smooth ), subdividess'™* (subd ), and computes the detail  as in the case of analysis we can get savings from noticing that in
vectorsd® (cf. Fig. 7). Synthesis reconstructs levddy subdividing flat regions, for example, little is gained from synthesis and one
level: — 1 and adding the details. might as well save the time and storage associated with synthe-

So far we have assumed that all levels are uniformly refined, i.e., sis. This is the basic idea behiadaptive synthesisvhich has two
all neighbors at all levels exist. Since time and storage costs grow main purposes. First, ensure the mesh is restricted on each level,
exponentially with the number of levels, this approachis unsuitable (cf. Fig. 10). Second, refine triangles and recompute points until
for an interactive implementation. In the next sections we explain the mesh has reached a certain measure of local flatness compared
how these basic algorithms can be made memory and time efficient.against the threshold;. ‘

Adaptiveand local versions of these generic algorithms (cf. The algorithm recomputes the poing§(v) starting from the
Fig. 3 for an overview of their use) are the key to these savings. coarsest level. Not all neighbors needed in the subdivision stencil
The underlying idea is to use lazy evaluation and pruning based onof a given point necessarily exist. Consequently adaptive synthesis




Figure 10: A restricted mesh: the center triangle i€nand its
vertices inV*. To subdivide it we need the 1-rings indicated by the

circular arrows. If these are present the graph is restricted and we

can compute'*! for all vertices and middle vertices of the center
triangle.

lazily creates all triangles needed for subdivision by temporarily re-

Refine (¢, ¢, dir)

if t.leaf then Create children fot
Vo €t :if wv.depth <i+1 then
GetRing (v, 1)
Update (v,1)
Ym € N(v,i+1,1) :
Update (m, 1)
if m.finest > 14 1 then
forced := true
if dir and Flat (¢) <es and not forced then
Delete children of
else
Vit € current : t.restrict := true

Update (v, 7)
v.s[i + 1] := subd (v, 1)
v.depth =1+ 1
if wv.finest > 1+ 1 then
vsfi+ 1] += v.F(i+ 1) xv.d[i + 1]

The conditiorw.depth = ¢ + 1 indicates whether an earlier call to

fining their parents, t_hen computes subdivision, and finally d_eletes Refine already recomputegf"’l (U) If not, call GetRing (U, Z)
the newly created triangles unless they are needed to satisfy theandupdate (v, ) to do so. In case a detail vector livesvait level

restriction criterion. The following precondition holds before en-
tering Adaptive Synthesis

e VteT7|0< 5< 1 tisrestricted
o Vo e V|0 < j<wv.depth :v.s[j] = (v)

wherev. depth := max;{s'(v)has been recomputed

AdaptiveSynthesis

Yo € VO : v.depth := 0
for =0t n—1
temptri := {}
VieT" :
current = {}
Refine (t,1,true )
YVt € temptri : if not
Delete children ot

t.restrict then

The list temptri serves as a cache holding triangles from levels
7 < t which are temporarily refined. A triangle is appended to the
listif it was refined to compute a value at a vertex. After processing
level ¢ these triangles are unrefined unless theiestrict flag is

set, indicating that a temporarily created triangle was later found
to be needed permanently to ensure restriction. Since triangles are

appended tdemptri, parents precede children. Deallocating the
list tail first guarantees that all unnecessary triangles are erased.

The functionRefine (¢, :, dir) (See below) creates children of
t € T* and computes the values’® (v) for the vertices and mid-
dle vertices of. The results are stored ins[: + 1]. The boolean
argumentdir indicates whether the call was made directly or recur-
sively.

i (v.finest > ¢ 4 1) add it in. Next compute‘t! (m) for mid-
dle vertices on level 4+ 1 aroundv (m € N(v,¢+ 1,1), where
N(v,1,1) is thel-ring neighborhood of vertex at level:). If m
has to be calculated, compuigbd (2, ) and add in the detail if it
exists and record this factin the flgced which will prevent unre-
finement later. At this point, al*** have been recomputed for the
vertices and middle vertices of Unrefinet and delete its children

if Refine was called directly, the triangle is sufficiently flat, and
none of the middle vertices contain details (ifesced = false ).
The list current functions as a cache holding triangles from level
¢ — 1 which are temporarily refined to build a 1-ring around the
vertices oft. If after processing all vertices and middle vertices of
¢ it is decided that will remain refined, none of the coarser-level
triangles fromcurrent can be unrefined without violating restric-
tion. Thust.restrict is set for all of them. The functioRlat (t)
measures how close to planar the corners and edge middle vertices
of t are.

Finally, GetRing (v, 7) ensures that a complete ring of triangles
on level: adjacentto the vertex exists. Because triangles on level
¢ are restricted triangles all triangles on levetl 1 that contairw
exist (precondition). At least one of them is refined, since other-
wise there would be no reason to c@éetRing (v, ). All other
triangles could be leaves or temporarily refined. Any triangle that
was already temporarily refined may become permanently refined
to enforce restriction. Record such candidates inctheent cache
for fast access later.

GetRing (v, 7)

Vie T 'withv €t :
if t.leaf then
Refine (¢,¢— 1,false ); temptri.append(t)
t.restrict .= false ;t.temp := true
if t.temp then
current. append(t)




4.3 Local Synthesis

Even though the above algorithms are adaptive, theytiineis ev-
erywhere. During an edit, however, not all of the surface changes.
The most significant economy can be gained from performing anal-
ysis and synthesis only over submeshes which require it.

Assume the user edits levelknd modifies the points'(v) for
v € V* C V', This invalidates coarser level valugsandd® for
certain subsefs™ C V*,: <, andfinerlevel points’ for subsets
V* C V' for: > . Finer level detail vectorg® for ¢ > [ remain
correct by definition. Recomputing the coarser levels is done by
local incremental analysigescribed in Section 4.4, recomputing
the finer level is done blpcal synthesislescribed in this section.

The setof vertice§™* which are affected depends on the support
of the subdivision scheme. If the support fits intoraxing around
the computed vertex, then all modified vertices on level1 can
be found recursively as

yretl = U N(v,i+1,m).
vEV*?

We assume that: = 2 (Loop-like schemes) o = 3 (Butterfly
type schemes). We define thebtriangulatioriZ ** to be the subset
of triangles of7™ with vertices inV **.

LocalSynthesis is only slighty modified from
AdaptiveSynthesis iteration starts at level and iter-
ates only over the submegH:.

4.4 Local Incremental Analysis

After an edit on level local incremental analysiwill recompute
s"(v) andd' (v) locally for coarser level vertices K ) which are
affected by the edit. As in the previous section, we assume that
the user edited a set of verticeon levell and callV*' the set of
vertices affected on levél For a given vertex € V** we define

Vi
Ve, Ve,
2

Figure 11: Sets of even vertices affected through smoothing by ei-
ther an evem or oddm vertex.

R'™'(v) C V'~ to be the set of vertices on leviel- 1 affected
by v through the smoothing operatéf. The setd”** can now be
defined recursively starting from leve= [ to ¢ = 0O:

The setR'~!(v) depends on the size of the smoothing stencil and
whetherv is even or odd (cf. Fig. 11). If the smoothing filter
is 1-ring, e.g., Gaussian, thaliﬂ"l(v) = {v} if v is even and

R (m) = {ve1,ve2} if m is odd. If the smoothing filter is 2-
ring, e.g., Taubin, the®'~!(v) = {v} U{vx | 1 < k < K}

if v is even and®' = (m) = {ve1, ves,vs1, 052} if v is odd. Be-
cause of restriction, these vertices always exist. +Fer V* and

v’ € R (v) we lete(v, v') be the coefficient in the analysis sten-
cil. Thus

(Hs")(v))

This could be implemented by running over thleand each time
computing the above sum. Instead we use the dual implementation,
iterate over alb, accumulating=) the right amount ta*(v") for

v’ € R'='(v). In case of a 2-ring Taubin smoother the coefficients
are given by

cv,v) = (L—p)(L=X)+pr/6

c(v,ur) = pA/6K
c(m,ve1) = (1—pA+ 1A =XNp+pr3)/K
c(m,vp) = pA/3K,

where for each(v, v'), K is the outdegree of .

The algorithm first copies the old points(v) for v € V** and
1 < [ into the storage location for the detail. If then propagates
the incremental changes of the modified points from lévelthe
coarser levels and adds them to the old points (saved in the detail
locations) to find the new points. Then it recomputes the detall
vectors that depend on the modified points.

We assume that before the edit, the old poistia) for v €
V*! were saved in the detail locations. The algorithm starts out by
building V**~! and saving the points'~!(v) for v € V**~!in
the detail locations. Then the changes resulting from the edit are
propagated to level — 1. Finally S s*~! is computed and used to
update the detail vectors on level

LocalAnalysis( 7)
Yo e V* Vo' € R v) -
V*i—l U= {UI}
v'dli — 1] := v'.s[i — 1]
Yo e V* Vo' € RP7H(v) ¢
v'.s[i — 1] += c(v,v') * (v.s[i] — v.d[i])

Yo e V¥l
vdfi] = U.F'(i)t * (v.s[i] — subd (v,7 — 1))
Ym € N(v,1,1) :

m.d[i] = m.F(2)" * (m.s[i] —subd (m,s — 1))

Note that the odd points are actually computed twice. For the Loop

scheme this is less expensive than trying to compute a predicate to
avoid this. For Butterfly type schemes this is not true and one can

avoid double computation by imposing an ordering on the triangles.

The top level code is straightforward:

LocalAnalysis

Yo e V¥ ood[l] := v.s[l]
for ¢:=1 downto 0
LocalAnalysis( 7)

It is difficult to make incremental local analysis adaptive, as it is
formulated purely in terms of vertices. It is, however, possible to
adaptively clean up the triangles affected by the edit and (un)refine
them if needed.

4.5 Adaptive Rendering
The adaptive renderinglgorithm decides which triangles will be
drawn depending on the rendering performance available and level
of detail needed.

The algorithm uses a flagdraw which is initialized tofalse ,
but set totrue as soon as the area corresponding te drawn.
This can happen either whetitself gets drawn, or when a set of
its descendents, which coveris drawn. The top level algorithm
loops through the triangles starting from the lewel 1. A triangle



is always responsible for drawing its children, never itself, unless it are never copied, and a boundary is needed to delineate the actual

is a coarsest-level triangle. submesh.
The algorithms we have described above make heavy use of
. container classes. Efficient support for sets is essential for a fast
AdaptiveRender implementation and we have used the C++ Standard Template Li-
for i=n—1 downto O brary. The mesh editor was implemented using Openinventor and
Vee Tt . ifnot  t.leaf then OpenGL and currently runs on both SGI and Intel PentiumPro
Render (t) workstations.
Yt T° : if not t.draw then
displaylistappend(t)

T-vertex

7

Figure 12: Adaptive rendering: On the left 6 triangles from leyel
one has a covered child from level 1, and one has a T-vertex.
On the right the result from applyirigender to all six.
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TheRender (t) routine decides whetherthe childrentdfave to be \ A
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drawn or not (cf. Fig.12). It uses a functiedist () which mea- \‘“,“Es&ﬂ““ﬂ

\ N
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sures the distance between the point corresponding to the edge's ﬂ;‘\“\%%%%ﬁ%sssssw%m s
middle vertexm, and the edge itself. In the when case any of the ',“\“‘%“l‘\‘ﬁﬁﬂgswﬂgﬁw/ ;‘(,E,jgwﬂml
children oft are already drawn or any of its middle vertices are far ;@@Eﬁﬁg@&d\% W‘"‘\&WM
enough from the plane of the triangle, the routine will draw the rest ““;‘;’V\W\Qﬁﬁsﬁﬁi}gﬂi&%’ N
of the children and set the draw flag for all their vertices antt RN Ny

also might be necessary to draw a triangle if some of its middle
vertices are drawn because the triangle on the other side decided
to draw its children. To avoid cracks, the routioat (¢) will cut

¢t into 2, 3, or 4, triangles depending on how many middle vertices
are drawn.

év AV
1
i

Render (¢)
Ifor (gfneetfmlig [\fé?tvzxw _| ggi?st (m) > ep) then Figure 13: On the left are two meshes which are uniformly sub-
Ve € t.child : divided and consist of 11k (upper) and 9k (lower) triangles. On
if not  c.draw then the right another pair of meshes mesh with approximately the same
displaylistappend(c) numbers of triangles. Upper and lower pairs of meshes are gen-
Yo € ¢ : v.draw = true erated from the same original data but the right meshes were op-
t draw = true timized through suitable choice ef. See the color plates for a
else if 3m € t.mid_vertex | m.draw = true comparison between the two under shading.

vt' € cut (t) : displaylistappend(t")
t.draw := true

5 Results

In this section we show some example images to demonstrate vari-
ous features of our system and give performance measures.
Figure 13 shows two triangle mesh approximations of the Ar-

4.6 Data Structures and Code madillo head and leg. Approximately the same number of triangles
The main data structure in our implementation is a forest of trian- are used for both adaptive and uniform meshes. The meshes on the
gular quadtrees. Neighborhood relations within a single quadtree left were rendered uniformly, the meshes on the right were rendered
can be resolved in the standard way by ascending the tree to theadaptively. (See also color plate 15.)
least common parent when attempting to find the neighbor across a Locally changing threshold parameters can be used to resolve an
given edge. Neighbor relations between adjacent trees are resolvedrea of interest particularly well, while leaving the rest of the mesh
explicitly at the level of a collection of roots, i.e., triangles of a at a coarse level. An example of this “lens” effect is demonstrated
coarsest level graph. This structure also maintains an explicit rep-in Figure 14 around the right eye of the Mannequin head. (See also
resentation of the boundary (if any). Submeshesrooted at any levelcolor plate 16.)
can be created on the fly by assembling a new graph with some set We have measured the performance of our code on two plat-
of triangles as roots of their child quadtrees. It is here that the ex- forms: an Indigo R10000@175MHz with Solid Impact graphics,
plicit representation of the boundary comes in, since the actual treesand a PentiumPro@200MHz with an Intergraph Intense 3D board.




We used the Armadillo head as a test case. It has approximatelyAcknowledgments
172000 triangles on 6 levels of subdivision. Display list creation
took 2 seconds on the SGI and 3 seconds on the PC for the full
model. We adjustedr so that both machines rendered models at
5 frames per second. In the case of the SGI approximately 113,00
triangles were rendered at that rate. On the PC we achieved 5
frames per second when the rendering threshold had been raise%
enough so that an approximation consisting of 35000 polygons was
used.

The other important performance number is the time it takes to
recompute and re-render the region of the mesh which is changing
as the user moves a set of control points. This submesh is rendereReferences
in immediate mode, while the rest of the surface continues to be ; ;
rendered as a display list. Grabbing a submesh of 20-30 faces (a [ Eg;};a%tfrﬁggg écIJDdEeILEEII\:l 'Ilgralrjs I?grﬁgﬁﬂ %ﬁa(TSIJng;S a
typical case) at level 0 added 250 mS of time per redraw, at level 1 532-540 ) ' ' '
it added 110 mS and at level 2 it added 30 mS in case of the SGI. 2] ’
The corresponding timings for the PC were 500 mS, 200 mS and
60 mS respectively.
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NSF STC for Computer Graphics and Scientific Visualization.
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1 Introduction

Multiresolution analysis and wavelets have received considerable attention in recent years fueled
largely by the diverse collection of problems that benefit from their use. The basic idea behind
multiresolution analysis is to decompose a complicated function into a “simpler” low-resolution
part, together with a collection of perturbations called wavelet coefficients that is necessary to
recover the original function. For many of the functions encountered in practice, a large percentage
of the wavelet coefficients are small, meaning that good approximations can be obtained by using
only a few of the largest coefficients. Impressive “lossy” compression rates for images have been
achieved using this type of approximation [8].

Two-dimensional wavelets are important for a variety of applications, including image com-
pression. They are generally constructed by forming tensor products of univariate wavelets [7],
in much the same way that tensor-product B-spline surfaces are formed by products of univari-
ate B-splines. Unfortunately, tensor-product constructions require the functions to be decomposed
be defined on Ror on a periodic version of R such as the cylinder or torus. There also exist
nontensor-product constructions for wavelets oh[R 13], but none of these methods are appli-
cable to functions defined on more general topological domains, such as spheres.

In this chapter, we show that by building them on subdivision surfaces, wavelets may be ex-
tended to functions defined on domains of arbitrary topologicalltyffeor a more complete de-
scription of the work, see Lounsbeey al[16].)

1.1 Applications.

The construction of wavelets on subdivision surfaces considerably extends the class of applications
to which multiresolution analysis can be applied, including,

e Continuous level-of-detail control for animatiolVhen a complex shape is rendered in an
animation, a fully detailed representation of the shape contains much more detail than is
required for all but the closest view. Using a compressed subdivision wavelet representation
of complex objects, itis possible to greatly reduce the number of polygons in a scene without
significantly reducing visible details. Moreover, it is possible to smoothly vary the level of
detail, avoiding discontinuous jumps that occur as a result of sudden switching between
separate models.

e Compression of functions defined on surfac€ansider the example of Figure 8, where
a globe (a geometric sphere) is pseudo-colored according to the elevation. The pseudo-
coloring can be thought of as a function that maps each point on the spherB@gdriple.
A straightforward method for storing the function is to store its value at a large number
of regularly distributed points; in this case more than one million points were used. The
methods in this paper can be used to create compressed wavelet approximations of varying
complexity.

e Multiresolution editing of surfacesHierarchical B-splines, as introduced by Forsey and
Bartels [11], provide a powerful mechanism for editing shapes at various levels of detail.
However, hierarchical B-splines can only represent a restricted class of surface topologies.

1The topological type of a surface refers to its genus, presence of boundary curves, etc.



Subdivision wavelets provide an alternative to hierarchical B-splines, and are capable of
representing tangent-plane smooth multiresolution surfaces of arbitrary topological type.
Editing at fractional levels of detail can also be achieved using the methods developed by
Finkelstein and Salesin [10].

e Surface optimizationThe multiple levels of approximation produced by wavelet techniques
offer a sort of multigrid technique for optimization. Pentland [21] uses wavelet methods to
implement multigrid optimization for surface interpolation over regular grids. Meyers [19,
20] shows how wavelets can accelerate the reconstruction of surfaces from contour data.
The wavelet techniques described in this chapter can be used to accelerate optimization over
subdivision surfaces.

1.2 Wavelets and Multiresolution Analysis.

Wavelets have roots in approximation theory, signal processing, and physics. The formal develop-
ment of multiresolution analysis as a rigorous theory dates to Mallat in 1989 [17], although related
pyramidal techniques for image analysis [4] precede his work. In the brief time since their devel-
opment, wavelets have found use in signal analysis [17, 22], image processing [8, 18], physics [1],
and numerical analysis [3]. More recently, wavelets have been applied to a wide range of computer
graphics problems, including curve modeling [10], image editing [2], improved global illumination
[23, 12, 5], optimization for surface interpolation [21], creating surfaces from contours [19, 20],
and animation control [14]. An excellent tutorial on the use of wavelets in computer graphics is
presented by Stollnitet al. [25].

1.3 Intuitive Application to Surfaces.

Although the mathematical underpinnings of multiresolution analysis of surfaces are rather in-
volved, the resulting algorithms are relatively simple. Before delving into the mathematical details,
let us first understand how the method can be applied to decompose the polyhedral object shown
in Figure 1(a).

(€)

Wavelet coefficients  Wavelet coefficients
Figure 1: Decomposition of a polyhedral surface.

The main idea behind multiresolution analysis is the decomposition of a function (in this case,
a polyhedron expressed as a parametric function on a subdivided sphere) into a low-resolution part



and a “detail” part. The low-resolution part of the polyhedron in Figure 1(a) is shown in Fig-
ure 1(b); the vertices in (b) are computed as certain weighted averages of the vertices in (a). These
weighted averages essentially implemetawa pass filter(a filter that eliminates fine-level detail)
denoted a&\. The detail part consists of a collection of fairly abstract coefficients, calactlet
coefficientscomputed as weighted differences of the vertices in (a). These differencing weights
form a high-pass filteB. The decomposition process, technically cabelysis can be used to
further split (b) into an even lower-resolution version and corresponding wavelet coefficients. This
cascade of analysis steps, referred to filsea bankalgorithm, culminates with the coarsest-level
representation in (c), together with wavelet coefficients at each level.

The analysis filter&\ andB are constructed so that the original polyhedron can be recovered
exactly from the low-resolution version and the wavelet coefficients. Recovery, technically called
synthesisreconstructs (a) from (b) and the finest-level wavelet coefficients. Recovery refines each
triangle of (b) into four subtriangles by introducing new vertices at edge midpoints, followed by
perturbing the resulting collection of vertices according to the wavelet coefficients. The refining
and perturbing steps are described by two other fiRefthe refining filter) and) (the perturbing
filter), collectively called synthesis filters.

The trick is to develop the four analysis and synthesis filters so that: (1) the low-resolution
versions are good approximations of the original object (in a least-squares sense); (2) the magni-
tude of a wavelet coefficient reflects a coefficient’s importance by measuring the error introduced
when the coefficient is set to zero; and (3) analysis and synthesis filter banks should have time
complexity that is linear in the number of vertices.

1.4 Multiresolution Analysis on the Real Line.

To formulate multiresolution analysis for surfaces of arbitrary topological type, we must first use
a fairly general, but unfortunately abstract, view of multiresolution analysis. There are two basic
ingredients for a multiresolution analysis: an infinite chain of nested linear function spfces
V1 c V2 c ... and an inner productf,g) defined on any pair of functions,g € VI, for some
j < . Intuitively, V! contains functions of resolutioj with the detail increasing asincreases.

The inner product is used to define the orthogonal complement sptcas

Wi = {feVvitl|(f,g)=0VvgeVil.

Orthogonal complements are often writterMds? = VI @ W/ because any functiofi +1 ¢ Vi+1
can be written uniquely as an orthogonal decomposition

fltl = fl 4 nl,

wherefl e VI andh! e Wi, Orthogonal decompositions are important for approximation purposes:
it is easy to show that! is the best approximation tbi1 in that it is the unique function i\

that minimizes the least-squares resid(fl™ — 1, fi*1 — fi). Thus, given a high-resolution
function f1+1, its low-resolution part is!, and its detail part i&!.

The following terminology is now standardcaling functionsefers to bases for the spadés
andwaveletsrefers to bases for the orthogonal complement spaces. As shown in Section 2.5.4,
the analysis and synthesis filters are determined by considering various ways of changing bases
between scaling functions and wavelets.



1.5 Subdivision Rules: Split and Average.

Intuitively speaking, subdivision surfaces are defined by iteratively refining a control k@sh
so that the sequence of increasingly faceted mebtieM?, ... converges to some limit surface
S= M. In each subdivision step, the verticesMf™! are computed as affine combinations of
the vertices oM. Thus, ifV! is a matrix whosé-th row consists of the, y, andz coordinates of
vertexi of M!, there exists a nonsquare matrix of consté&tsuch that

vitl—plyi, (1)

The matrixP! therefore characterizes the subdivision method. The beauty of subdivision surface
schemes is that the entriesPf depend only on the connectivity of the verticesvifi, not on the
geometric positions of the vertices.

The simplest example of such a scheme is polyhedral subdivision. Its splitting step is the same
as that of other primal schemes, but its averaging step is simply the identity — that is, no vertices
are repositioned. Thus, given a polyhedMBwith triangular faces, a new polyhedrdtt is built
directly by splitting each triangular face M° into four subfaces as in Figure 2. The matf%
characterizing the first polyhedral subdivision step on the tetrahedron is also shown in Figure 2.
Running this subdivision scheme fgrsteps on an initial triangular me$H® produces a mesh
MJ. MI includes the vertices d1° together with new vertices introduced through subdivision.
The valence of the vertices bf! that correspond to the original verticeshit remains fixed. The
new vertices introduced through subdivision however are always of valence six, corresponding to a
regular triangular tiling of the surface. As the mesh is further subdivided, the extraordinary points
become increasingly isolated in an otherwise regular tiling of the mesh.

Polyhedral subdivision converges to the original polyhedron covévitighat is, to aC° sur-
face. Other schemes have also been developed that converge to tangent-plane smooth limit surfaces
that either approximate or interpolate the verticeM8f

Although they can be somewhat tricky to analyze, subdivision surfaces provide a versatile and
efficient tool for modeling surfaces of arbitrary topological type. In the next section, subdivision
surfaces are also shown to have the refinability property essential for constructing a multiresolution
analysis.
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Figure 2: Polyhedral subdivision of a tetrahedron and various associated filters



2 Multiresolution Analysis from Subdivision

2.1 Nested linear spaces through subdivision

When formulating multiresolution analysis on the entire real line, the nested sequence of linear
spaces required by multiresolution analysis are generally obtained by defining a single scaling
fucntion@(x) that satisies a refinement equation of the form

Ox) = > pig(2x—i)

for some fixed constantg;. The refinement equation (sometimes called a two-scale relation)
guarantees that the spaces defined as

V1= Spar{@(2x—i)|i = —,...,}

are nested. In other words, the nested spaces are generated by translations and dilations of a single
refinable functiorp(x).

To generalize these ideas to domains of arbitrary topological type, one could attempt to make
definitions for what it means to dilate and translate a function on an arbitrary topological domain.
One could then try to find a refinable scaling function and proceed as before to define orthogonal
complements, wavelets, and so on. We have instead chosen what appears to be a simpler approach,
motivated by subdivision. _

In this section, we use recursive subfivision to define a collection of funcgiti$ that are
refinable in the sense that each function with supersgriigs in the span of the functions with
superscriptj + 1; the argumenk is a point that ranges over a domain 2-manifold of arbitrary
topological type. In one respect, this is a generalization of the approach taken by Daubechies
in that her locally supported orthogonal scaling functions are also defined through a recursive
subdivision procedure. Although in general e are not simple dilates of thg/(x), we can
nevertheless use them to deine a sequence of nested spaces.

2.2 Refinable Basis Functions from Subdivision.

All subdivision schemes that we have mentioned converge to éfher C! surfaces. In such a
case, it is possible to show that the resulting limit surface can be parametrized using a function
S(x), wherex is a point that ranges over the faces of the initial mésh[15]. The initial meshv®
therefore serves as the parameter domain for the limit surface. Specifically, it can be shown [15]
that for anyj > 0, and any poink on some face df1°, S(x) can be written as

Sx) = 3 Vel (x), 2)

wherev! +i denotes theth vertex ofM!. The scaling functions depend on the subdivision rules
used, and are defined through a limiting procedure, or using the evaluation method of Stam[24].
It is convenient to rewrite Equation 2 in matrix form as

S(x) = ®I(x) VI, ®3)



where®! (x) denotes the row matrix of scaling functiopgx), and wherev! is as in Equation 1.
Equation 3 shows an analogy with B-splines, wheregt{) are comparable to the B-spline basis
functions, and th&! are akin to the control points.

These scaling functions can also be shown to satisfyefigement relation

@l (x) = dIT(x)P). (4)

This equation establishes refinability because it states that each of the fum,i,(hsan be writ-

ten as a linear combination of the functiad§1(x). O _
It is convenient to write Equation 4 in block matrix form by writidg 1(x) as

®I(x) = (01+1(x) N I+1(x)). (5)

In this equationQ1*1(x) consists of all scaling functiortd“(x) associated with the old vertices
of MI (the black vertices in Figure 2) ard 1*1(x) consists of the remaining scaling functions
associated with the new vertices added when obtaikifigt from M! (the white vertices in Fig-
ure 2). Equation 4 can now be expressed in block matrix form:

@100 = (01400 N0y () ) ©

whereO! andN! represent the portions of the subdivision maRixwhich weight the “old” and
“new” vertices, respectively. The block matrix decompositiorPBffor the example tetrahedron
appears in Figure 2.

2.3 Nested Linear Spaces.

Given these relations, a chain of nested linear spa¢éd®) associated with a mes¥® can now
be defined as follows: _ _
VI (M?) := Spar(®!(x)),

where thev1(M?) are spaces of scalar-valued functions.
Equation 4 implies that these spaces are indeed nested; that is,

VOMO) cvimO) ¢ ...

The notationV1(M®) emphasizes that the linear spaces are adaptdtf to that they consist of
functions havingv® as the domain.

2.4 Inner Products over Subdivision Surfaces.

Given a chain of nested linear spaces, the other necessary ingredient for the creation of a multires-
olution analysis is the existence of an inner product on these spaces. In this section, we define an
inner product and sketch a method for computing the inner product of functions defined through
subdivision. A detailed treatment is given in Lounsbery[15].

The inner product values are used to build linear systems defining the wavelets. For an efficient
implementation of subdivision wavelets, the actual values of neither the inner products nor the
wavelets need to be computed at run time, if the base méshk known in advance.
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2.4.1 Definition.

Given two functionsf,g € VI(MO), j < w, (with some foresight) we define their inner product to

be
1

(19= 5 Fream [ 16¢) g o,

TeA(MO

whereA(M?) denotes the set of triangular facesM?, and wheredx’ is the usual Euclidean area
form for the triangler in R3.

This definition of inner product implies that triangles of different geometric size and shape are
weighted equally; that is, the inner product is independent of the geometric positions of the vertices
of M9. This inner product definition has two important consequences.

First, in the process of constructing the least-squares best wavelet approximation to a function,
each approximated triangle is weighted equally, independent of its true geometric size. The effect
of this weighting depends on the particular application, but we have found no problems for the
real-world examples that are described in Section 3.1.

Moreover, this measure has an important practical benefit. Because the orthogonal complement
spaces are invariant of the geometry of the mesh, a significant amount of precomputation of inner
products and wavelets can be performed — which allows the wavelet algorithms to be implemented
much more efficiently.

An alternative is to define the inner product so as to weight the integral by the areas of triangles
in M®. Whether such a definition has enough important practical benefit to offset its much increased
computation may be an interesting topic for future research.

2.4.2 Computation.

For piecewise linear subdivision leading to polyhedral surfaces, the scaling funq#i@cjsare
simply thehat functionsoverM?. (The hat function at a vertgxin a mesh is the piecewise linear
function which is 1 ap, blends smoothly to 0 at the neighborsppfand is O for all other vertices.
An example is shown in Figure 3.) When functiohandg are combinations of piecewise linear
scaling functions, it is fairly simple to directly compute the integral.

p

Figure 3: A piecewise linear hat function for a verferf valence 5.

In general, however, the nature of the scaling functions can make explicit integration difficult.
In these cases, one could estimate the inner produg) by subdividing the scaling functions



some number of times and directly integrating the resulting piecewise linear approximation. In
this section, we will see that such estimation is unnecessary, and that exact integration is still
possible for the general case. _

Indeed, one may computé, g) exactly whenevef andg are given as expansions(q‘\:

=3 g (x) g(x) = gl (x)
| |
Bilinearity of the inner product allowsf, g) to be written in matrix form as

(f,g)=g"1f

wheref andg are column matrices consisting of the coefficient$ ahdg, respectively, and where
11 is the square matrix whosg’-th entry is(11); i = (@, @). The inner product matrik’ for the
example tetrahedron appears in Figure 2.

When the scaling functions i®!(x) are locally supported, the subdivision matrid®sare
sparse, meaning that is also sparsel’ can be computed exactly by solving a system of linear
equations; hencéf,g) can also be computed exactly. This result is somewhat surprising because
it does not require a closed-form expression for the scaling functions — only a subdivision relation.

Without going too far into the details, the basic idea between the exact integration procedure is
to establish the following linear recurrence that relates | 1 71; |1 can be written as

1= PH)TI+p j =0,...

SinceP! is known, the only unknowns in the above equation are the entries bf thtgurns out
that the infinite chain of recurrences has only a finite number of distinct entries (up to a common
scale factor), meaning that a finite linear system can be solved to determine these entries.

Once an absolute scale for the homogeneous system is chosen, an arbitrary integral such as
(f,g) can be computed exactly.

2.5 Wavelets from Subdivision.

We have established nested linear spaces and an inner product. We are now in a position to define
our wavelet spaces as

WI(M) = {feVI*H(MO) | (f,g) =0 vgeVI(M%)},

and to construct wavelets, that is, a set of functltthsx) (Wi(x),W)(x),...) that span the or-
thogonal complement spadé! (M?). (The elements d#!(x) are not mutually orthogonal. Some
authors, including Chui [6], refer to such functionspes-waveletg

It is of significant practical importance that the decomposition and reconstruction filters asso-
ciated with these wavelets are constructed and applied in linear time. This practical concern drives
much of the development in this section.

2.5.1 The Construction.

Our wavelet construction consists of two steps. First, we build a basig fdfM?) using the scal-
ing functions®! (x) and the new scaling functiods 171(x) in VI+1(M9). It is straightforward to

9



show that®! (x) andN 1t1(x) together spak/ I+1(M?) if, and only if, the matrixO! (encoding the

subdivision rule around the old vertices) is invertible. Most primal subdivision methods, including

polyhedral subdivision and the butterfly method, have this prope@iven a functiorSI*(x) in

VI+1(MO) expressed as an expansion in the bagigx) N 1+1(x)), an approximation iv1(M°)

can be obtained bsestriction to®! (x); that is, by setting to zero the coefficients corresponding to

N I+1(x). However, this method generally does not produce the best least-squares approximation.
To ensure the best least-squares approximation after restrictibh(xy, we may orthogonal-

ize the new basis functiord 171(x) by computing their projection inta/!(M°). The resulting

functionsW! (x) are wavelets because they form a basig¥é(M°). Expressed in matrix form:

NI+1(x) = Wi(x)+ ol (x) al. 7)

Figure 4 is a plot of one such wavelet for the case of polyhedral subdivisiSh:1fx) is expanded
in terms of®} (x) andW!(x), then the restriction 08 1(x) to ®J(x) is guaranteed to be the best
approximation t&*t1(x) in VI (M?) in a least-squares sense.

Figure 4: A polyhedral wavelet centered on a regular vertex of valence 6.

2.5.2 Computation of Wavelets.

The coefficientsx! are solutions to the linear system formed by taking the inner product of each
side of Equation 7 witt) (x):

(@ (x), @) a = (@ (x),NI*(x)
(PHT (@*(x),N 1 (x)) 8)

where (F,G) stands for the matrix whosei’-th entry is((F);,(G)i). The matrix denoted by
(®(x),dl(x)) is therefore simply!, and the matrix®!*1(x),N I+1(x)) is a submatrix of /1
that consists of the columns that correspond to membexs/of (x). The matrixa® for the exam-
ple tetrahedron appears in Figure 2.

This system of equations may be solved for the coefficiahtsFollowing Equation 7, the
valuesa! are sufficient to construct the wavelets centered around the vertex at the center of each
scaling function irN 1+1(x).

20ne notable exception is Catmull-Clark subdivision for vertices of valence three. However, the subdivision rule
for such vertices can be easily modified to produce an invertible matrix.

10



2.5.3 Locally Supported Approximations to the Wavelets.

Although this construction produces wavelets orthogonal to the scaling functions aj,lévele

are some important practical difficulties that result. First, the inner product matrised to

solve Equation 8 must be inverted. Second, the inverdé isf dense even thougH is sparse.

As a consequence, the resulting wavelets are globally support®t? oimplying that filter bank
decomposition and reconstruction algorithms using these wavelets require quadratic time. In order
to apply these operations in linear time, we must build wavelets that are locally supported.

Constructing wavelets of local support is a common problem in the wavelet literature and has
been handled in various ways. Chui [6] is able to develop unique locally supported wavelets for
B-spline curves. Mallat [17] builds wavelets that, in addition to being orthogonal to the scaling
functions, are mutually orthogonal. Unlike Chui, Mallat’s conditions do not allow the construction
of locally supported wavelets. Instead, in practice Mallat approximates his wavelets with locally
supported truncations that are not strictly orthogonal to their scaling functions. Because the values
in Mallat’s wavelets decay exponentially away from the center, the deviation from orthogonality is
bounded by choosing the size of the local support.

When truncation iof this sort s used, decomposition and reconstruction are not inverses. This
is a disadvantage, because it means that decomposition followed by reconstruction does not ex-
actly reproduce the original surface. Nevertheless, Mallat has found the resulting nonorthogonal
approximation perfectly adequate for practical use.

Like those of Mallat, the wavelets resulting from Equation 8 are orthogonal, and are globally
supported over the entire domain meédR, with values that appear to decay exponentially. We
currently do not know of a construction leading to unique locally supported versions of subdi-
vision wavelets, nor whether such a construction always exists. We will therefore obtain locally
supported functions by relaxing the condition that¢héx)’s lie in Wi (M©). Instead, one may con-

struct them to span a spadg that is some (nonorthogonal) complementdfM©) in Vi+1(M?),
This approach, which works well in practice, improves on Mallat’s approach of merely truncating
coefficients. Instead, we build functions\ifd that are the least-squares projectiongpfx) into
WI. This practice ensures that they are as close as possible to orthogonal, given their restricted
support. Additionally, this construction ensures that the analysis and synthesis filters are inverses,
which truncation alone cannot achieve. We will see below that it is possible to make these approx-
imationsV, (M) arbitrarily close toV! (MP), at the expense of increasing their support. _

These approximations are constructed by selecting their supp@ni®ri. For eacthiJ (x),
those members ab! (x) whose supports are sufficiently distant from the suppofi\oft1); have
their corresponding coefficients in th¢h column ofa! set to zero. The remaining nonzero coef-
ficients can be found by solving a smaller, local variant of Equation 8. By allowing more of the
coefficients ofx) to be nonzero, the supports grow. The wavelets we have constructed have values
which are observed to decay exponentially. Therefore, as the support grows, the local approxima-
tion V2 (M®) built for them quickly approachag’(M9).

2.5.4 A Filter Bank Algorithm.

Analysis and synthesis on the infinite real line are based on an assumption of spatial invariance —
every place looks like every other place. This means that standard analysis and synthesis filters
can be represented by a convolution kernel, that is, by a sequence of real numbers. This is not
the case for multiresolution analysis on arbitrary topological domains. The filter coefficients in
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general must vary over the mesh, so the filters are represented by (hopefully sparse) matrices.

The analysis and synthesis filters can be conveniently expressed using block matrix equa-
tions. LetW(x) denote the row matrix of the locally supported wavelet approximations spanning
V. (MO9). For any multiresolution analysis the synthesis filters are defined by the relation

(@) Wix) =" x) (P Q1), ©)
and the analysis filters are obtained from the inverse relation
Al i AL
(Bj>=(PJ Q) (10)

For the construction, it is again convenient to wedte(x) in block form as
(O (x) N 1*(x)).
It then follows from Equation 7 that the synthesis filters can be written in block form as

o i _olal
(P Ql):(ﬁj 1—ONjauj>’ (11)

wherel denotes the identity matrix. The analysis filters are obtained from Equation 10. (Examples
for both are shown for the tetrahedron in Figure 2.)

From a practical standpoint, it is critical that the analysis and synthesis matrices are sparse. To
achieve linear time decomposition and reconstruction, they must each have a constant number of
nonzero entries in each row. ™ anda! are sparse, the@! is sparse. Unfortunately, the analysis
filters derived from Equation 10 need not be sparse. For interpolating subdivision schemes such
as polyhedral subdivision and ti@& “butterfly” scheme of Dyret al. [9], the situation is much
improved. Such interpolating schemes have the propertyQhag the identity matrix. Equation
11 in this case is greatly simplified; the resulting filters are

C 1 —al Al 1—a/ N al
(P Q]):<Nj 1—Njaj> (Bj>:< —NJ 1)'

If Pl anda! are sparse, then all four filters are also sparse, leading to linear time decomposition

and reconstruction. The situation is less desirable for methods related to B-splines, such as Loop’s

scheme and Catmull-Clark surfaces. For these subdivision schemes, the synthesis filters are sparse,

but the analysis filters are dense. This implies that decomposition is still possibls)itirdg, but

that the speed of reconstruction depends on the time to invert the sparse decomposition matrix.
The analysis filters can be used to decompose a sudaééx) in VI+1(M9) given by

S0 = Y v g ) (12)

into a lower resolution part i1 (M©) plus a detail part v, (M9)

) =y Vg () +y w0
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as follows. L_etVj be as in Equation 3, and I8¢/ denote the corresponding matrix of wavelet
coefficientsw/. We can rewrite Equation 12 in matrix form and substitute the definition of the
analysis filters. Thus:

Sj+1(x) — cDj+1(X) Vj+1 |
= (D)(x) W(x)) ( g‘: )Vj+1
= oA VIt LBl vitt

therefore,
Vi=Alyitl w! =Bl vitl,

Of course, the analysis filters)* andB!~* can now be applied tv! to yield V-1, Wi~1, etc.
A similar argument shows that!t1 can be recovered from! andW! using the synthesis filters:

vitl = piyviypQiwi,
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3 Wavelet Compression of Surfaces

3.1 Polyhedral Examples.

In this section, our theory is applied to two compression problems: the compression of a polyhedral

model consisting of over 32,000 triangles, and compression of a piecewise linear representation of
a color function defined on over one million points on the globe. The data for these examples were

resampled from cylindrical sections onto a subdivided octahedron.

3.1.1 Geometric Data.

The input for the first example (shown in Figure 5(a)) is a polyhedral mesh consisting of 32,768 tri-
angles whose vertices were resampled from laser range data originally provided through the cour-
tesy of Cyberware, Inc. The triangulation was created by recursively subdividing an octahedron
six times. The octahedron therefore serves as the domain kh&shith the input triangulation
considered as a parametric functigfx),x € M° lying in V6(M®). More precisely, if® denotes

the vertices of the input mesB(x) can be written as

S(x) =db(x)ve,  xeMO

where the scaling functior®®(x) are the (piecewise linear) functions defined through polyhedral
subdivision. _

The locally supported wavelet approximatiapié(x) for this example are chosen to be sup-
ported on 2-discs. (Thk-disc around a vertex of a triangulation is defined to be the set of all
triangles whose vertices are reachable frohy following k or fewer edges of the triangulation.)
The filter bank process outlined in Section 2.5.4 can be applied in linear time to r&wijtm the
form

5
= d0(x) VOr § Wix) wi.
S(x) (X) ,-Zo (X)

The first term describes a base shape as the projectiSfxpinto VO(M?), which in this case is
an approximating octahedron with vertex positions given by the six row® oFor this data, the
decomposition stage of the filter bank runs in about 14 seconds on an SGIl&digeme.

Approximations to the original mesB(x) can be easily obtained from the wavelet expansion
using only coefficients greater than a pre-selected threshold. The models in Figure 6(b), (d), and
(f) are compressed to 1%, 13%, and 32%, respectively. Notice that thresholding causes the mesh
to refine in areas of high detail, while leaving large triangles in areas of relatively low detail. An
unoptimized implementation of the entire decomposition and reconstruction process that produces
Figure 6(d) runs in about 53 seconds from input to output.

Figure 6 also illustrates the use of wavelet approximations for automatic level-of-detail control
in rendering. The original Spock polyhedron is shown in full resolution in Figure 5(a). Views of the
full-resolution model from various distances are shown in the rest of Figure 5. When viewing the
input polyhedron at these distances, it is inefficient and unnecessary to render all 32,000 triangles.
The approximations shown in the left column of Figure 6 may instead be used without significantly
degrading image quality.
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Figure 5: The full-resolution Spock polyhedron. Left: the full mesh (16,386 points, 32,768 trian-
gles). Right: Gouraud-shaded views of the full mesh at various distances.
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Figure 6: Wavelet approximations of the Spock polyhedron.



Figure 7: Close-up of Earth data before compression

3.1.2 Color Data.

Subdivision wavelets may be applied to more general functions over surfaces than geometric data.
Figure 8 demonstrates another application — that of compressing a function on the sphere. In this
example, elevation and bathymetry data obtained from the U.S. National Geophysical Data Center
was used to create a piecewise linear pseudocoloring of the sphere. The resulting color function
was represented by 2,097,152 triangles and 1,048,578 vertices. The full-resolution pseudocoloring
was too large to be rendered on an SGI Indifatreme with 128 MB, and is therefore not shown

in its entirety in Figure 8. Instead, Figure 7 shows a close-up of a region that is compressed in
Figure 8. An appreciation for the density of the data can be obtained from Figure 7(b), where even

at close range the mesh lines of the original uncompressed data are so dense that the image appears
almost completely black.

The approximations shown in Figure 8(a)-(f) were produced using subdivision wavelet com-
pression. Figure 8(a) shows a distant view of the Earth using an approximation of only 0.1% [the
mesh is shown in (b)]. Likewise, Figures 8(c) and (d) show the result of compression to 2% for a
medium-range view. At close range the compression to 16% in (e) is nearly indistinguishable from
the full-resolution model in Figure 7(a). A comparison of the meshes shown in Figure 7(b) and
Figure 8(f) reveals the striking degree of compression achieved in this case.

3.1.3 Run Times.

Example run times for the Spock and Earth data sets appear Tables 1 and 2. All times reflect
compression done on an SGI Indfgéxtreme with a 100 MHz MIPS R4000 CPU and 128 MB of
physical memory.

The first two lines of Table 1 give information about the size of the Spock ifetomposition
timegives the filter bank time needed for any compression of the Spock dat&edextion timés
the time required to select wavelet coefficients by thresholding.

Table 2 is broken down to compare side by side reconstruction times for different coefficient
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Figure 8: Approximating color as a function over the sphere.
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thresholds. The thresholds chosen were used to generate the compressions shown in Figure 6(b),
(d), and (f). In the tableCoefficients selectetlls how many coefficients were selected using

the indicated coefficient threshold. Information about the size of each reconstruction is given
in Triangles in reconstructiomnd Fraction of original. Reconstruction timmcludes time for

adding back wavelets and recursive expansion, but not for triangulation. Reconstruction and de-
composition times are given separately. When separate compressions of the same data set are
run, decomposition needs to be run only once, but selection and reconstruction need to be run for
each compression. The times for coefficient selection and for triangulation are much less than for
decomposition and reconstruction; their contribution is include@oial processing timeyhich

gives the beginning-to-end time for a single decomposition and reconstruction session. This value
is the sum of decomposition, selection, and reconstruction time, plus all additional operations, in-
cluding memory management and disk 1/O. (Disk I/O is particularly time-consuming for the file of
Earth input, which takes up more than 51 MB of ASCII data before compression.)

Tables 3 and 4 give information about the Earth data set, using the same format as the Spock
tables.

Table 1: Statistics for Spock data.

INPUT VERTICES 16,386
INPUT TRIANGLES 32,768
SUBDIVISION DEPTH 6
DECOMPOSITION TIME 14
SELECTION TIME 1

Table 2: Spock compression results

FIGURE 6(b) | 6(d) 6(f)
COEFFICIENT THRESHOLD 2.0| 0.06| 0.017
COEFFICIENTS SELECTED 107 | 1,966| 5,054
TRIANGLES IN RECONSTRUCTION| 240| 4,272| 10,704
FRACTION OF ORIGINAL 0.007| 0.13 0.33
RECONSTRUCTION TIME 4 29 63
TOTAL PROCESSING TIME 25 53 87

Table 3: General Earth data.

INPUT VERTICES 1,048,578
INPUT TRIANGLES 2,097,152
SUBDIVISION DEPTH 9
DECOMPOSITION TIME 588
SELECTION TIME 50
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Table 4: Earth compression results

FIGURE 8(b) 8(d) 8(f)
COEFFICIENT THRESHOLD 0.02| 0.002| 0.0005
COEFFICIENTS SELECTED 741 | 15,101| 138,321
TRIANGLES IN RECONSTRUCTION| 1,968| 39,408| 328,058
FRACTION OF ORIGINAL 0.001| 0.019 0.156
RECONSTRUCTION TIME 75 310 1,230
TOTAL PROCESSING TIME 1,315| 1,754 2,904

3.2 Smoothly Blending between Approximations.

Sudden switching between models of different detail in an animation may produce a noticeable
jump. This problem is easily mended by using a wavelet expansion, where the wavelet coefficients
are treated as continuous functions of the viewing distance. With this simple technique, the object
geometry can smoothly change its appearance as the viewing distance changes.

Consider two multiresolution approximatior&0) is shown at timey, and a subsequent finer-
resolution approximatioA(1) is depicted at timé;. The set of coefficient€ present inA(1) but
not in A(0) may be smoothly blended over the period of time betwgeandt; using a linear
interpolation of the new wavelet coefficients. More precisely, the approximAfigrpresented at
timet, (tp <t <tj) scales each coefficientof C by

(t—to)
(t1—to)

The result is a smooth linear blend betwe¥i®) andA(1). Note that a triangulation of the
intermediate approximatioi(t) has exactly the connectivity @ 1) along the entire blend; hence,
there is a discontinuous jump in the connectivity of the underlying mesh used to represent the
geometry as the time moves pgstHowever, the actual geometric effect of the transition is truly
gradual, and can be shown to the viewer free of any noticeable jumps.

Using subdivision wavelets for smooth blending has proven successful in the production of
frame-by-frame animations of complex models. In these animations, both color and geometry
vary smoothly as the distance from the eye to the model varies.
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A Variational Approach to Subdivision
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Variational Subdivision Schemes

Leif Kobbelt*

University of Erlangen—hfnberg

Preface an energy minimization process but when proceeding Wijth,
the vertices oP,.1 are not adjusted.

The generic strategy of subdivision algorithms which is to define  In the bivariate setting, i.e., the subdivision and optimization of
smooth curves and surfacakgorithmically by giving a set of sim- triangle meshes, we start with a given control mBgtwhose ver-
ple rules for refining control polygons or meshes is a powerful tech- tices are to be interpolated by the resulting mesh. In this case it
nique to overcome many of the mathematical difficulties emerging turns out that the mesh quality can be improved significantly if we
from (polynomial) spline-based surface representations. In this sec-use all the vertices frorPny, \ Py for the optimization in themth
tion we highlight another application of the subdivision paradigm subdivision step.
in the context of high quality surface generation. Hence the algorithmic structure of variational subdivision degen-

From CAGD it is known that the technical and esthetic quality erates to an alternating refinement and (constrained) global opti-
of a curve or a surface does not only depend on infinitesimal prop- mization. In fact, from a different viewing angle the resulting al-
erties like theCX differentiability. Much more important seems to ~ gorithms perform like a multi-grid solver for the discretized op-
be thefairnessof a geometric object which is usually measured by timization problem. This observation provides the mathematical
curvature based energy functionals. A surface is hence consideredustification for thediscrete fairing approach

optimal if it minimizes a given energy functional subject to auxil- For the efficient fairing of continuous parameteric surfaces, the

iary interpolation or approximation constraints. major difficulties arise from the fact that geometrically meaningful
Subdivision and fairing can be effectively combined into what is  energy functionals depend on the control vertices in a highly non-

often refered to asariational subdivisioror discrete fairing The linear fashion. As a consequence we have to either do non-linear

resulting algorithms inherit the simplicity and flexibility of subdi-  optimization or we have to approximate the true functional by a
vision schemes and the resulting curves and surfaces satisfy the solinearized version. The reliability of this approximation usually
phisticated requirements for high end design in geometric modeling depends on how close to isometric the surface’s parameterization
applications. is. Alas, spline-patch-based surface representations often do not

The basic idea that leads to variational subdivision schemes is provide enough flexibility for an appropriate re-parameterization
that one subdivision step can be considered &spalogical split which would enable a feasible linearization of the geometric en-
operationwhere new vertices are introduced to increase the number ergy functional. Figure 1 shows two surfaces which are both op-
of degrees of freedom, followed bysmoothing operatiomhere timal with respect to the same energy functional but for different
the vertices are shifted in order to increase the overall smooth- parameterizations.
ness. From this point of view is is natural to ask for the maxi-
mum smoothness that can be achieved on a given level of refine-
ment while observing prescribed interpolation constraints.

We use an energy functional as a mathematical criterion to rate
the smoothness of a polygon or a mesh. In the continuous setting,

such scalar valued fairing functionals are typically defined as an i \\\v“ <K o,«,
integral over a combination of (squared) derivatives. In the discrete /f'//%mﬁ\\‘?\\\\\ gyAVXI!‘ vﬂ»’v 'h'; ‘{\‘x‘\?\%‘
setting, we approximate such functionals by a sum over (squared) 4%1%}&\&}\\\” ’ Uiy fj{""‘%{\‘*‘&\ﬁ"'
divided differences. ‘ VAVAVAV ' ,44 AVA \ V
. . \
In the following we reproduce a few papers where this approach A‘

is described in more detail. In the univariate setting we con-
sider interpolatory variational subdivision schemes which perform Figure 1: Optimal surfaces with respect to the same functional and

a greedy optimization in the sense that when computing the poly- interpolation constraints but for different parameterizations (iso-
gon Py 1 from Py, the new vertices’ positions are determined by metric left, uniform right).

*Computer Sciences Department (IMMD9),  University of
Erlangen-Nitnberg, Am Weichselgarten 9, 91058 Erlangen, Germany,
Leif.Kobbelt@informatik.uni-erlangen.de

With the discrete fairing approach, we can exploit the auxiliary
freedom to define an individual local parameterization for every
vertex in the mesh. By this we find an isometric parameterization
for each vertex and since the vertices are in fact the only points
where the surface is evaluated, the linearized energy functional is a
good approximation to the original one.

The discrete fairing machinery turns out to be a powerful tool
which can facilitate the solution of many problems in the area of
surface generation and modeling. The overall objective behind the
presented applications will be the attempt to avoid, bypass, or at
least delay the mathematically involved generation of spline CAD-
models whenever it is appropriate.



In this paper a new class of interpolatory refinement schemes is

Univariate Variational Subdivision

Appropriate formalisms have been developed in (Cavaretta et al.,

presented which in every refinement step determine the new pointsl991), (Dyn & Levin, 1990), (Dyn, 1991) and elsewhere that allow

by solving an optimization problem. In general, these schemes are
global, i.e., every new point depends on all points of the polygon

to be refined. By choosing appropriate quadratic functionals to be

minimized iteratively during refinement, very efficient schemes pro-
ducing limiting curves of high smoothness can be defined. The well
known class of stationary interpolatory refinement schemes turns
out to be a special case of these variational schemes.

The original paper which also contains the omitted
proofs has been published in:

L. Kobbelt
A Variational Approach to Subdivision
CAGD 13 (1996) pp. 743-761, Elsevier

1.1 Introduction

Interpolatory refinement is a very intuitive concept for the construc-
tion of interpolating curves or surfaces. Given a set of pqilﬁts
RY which are to be interpolated by a smooth curve, the first step of a

refinement scheme consists in connecting the points by a piecewisechooses the new poinpgi‘jr

linear curve and thus defining a polygBa = (pJ,...,pS ;).

This initial polygon can be considered as a very coarse approx-
imation to the final interpolating curve. The approximation can be
improved by inserting new points between the old ones, i.e., by sub-
dividing the edges of the given polygon. The positions of the new
points p%”l have to be chosen appropriately such that the result-

ing (refined) polygorP, = (p3, ..., p3, ;) lookssmoothethan the
given one in some sense (cf. Fig. 2). Interpolation of the given
points is guaranteed since the old piniQi p%i still belong to the
finer approximation.

By iteratively applying this interpolatory refinement operation,
a sequence of polygor(®m) is generated with vertices becoming
more and more dense and which satisfy the interpolation condition

p"= prz‘ri”rl for alli andm. This sequence may converge to a smooth
limit Pe,.

Many authors have proposed different schemes by explicitly giv-
ing particular rules how to compute the new poipgﬁﬁ as a func-
tion of the polygonPm to be refined. In (Dubuc, 1986) a simple
refinement scheme is proposed which uses four neighboring ver-
tices to compute the position of a new point. The position is de-
termined in terms of the unique cubic polynomial which uniformly
interpolates these four points. The limiting curves generated by this

scheme are smooth, i.e., they are differentiable with respect to an

equidistant parametrisation.

Figure 2: Interpolatory refinement

In (Dyn et al., 1987) this scheme is generalized by introducing
an additional design or tension parameter. Replacing the interpo-
lating cubic by interpolating polynomials of arbitrary degree leads
to theLagrange-schemgwoposed in (Deslauriers & Dubuc, 1989).
Raising the degree {@k+ 1), every new point depends ¢Bk+ 2)
old points of its vicinity. In (Kobbelt, 1995a) it is shown that at least
for moderatek these schemes produck-curves.

an easy analysis of sushationary schemeasghich compute the new
points by applying fixed banded convolution operators to the orig-
inal polygon. In (Kobbelt, 1995b) simple criteria are given which
can be applied to convolution schemes without any band limitation
as well (cf. Theorem 2).

(Dyn et al., 1992) and (Le Bhau€ & Utreras, 1994) propose
non-linear refinement schemes which produce smooth interpolating
(CL) curves and additionally preserve the convexity properties of
the initial data. Both of them introduce constraints which locally
define areas where the new points are restricted to lie in. Another
possibility to define interpolatory refinement schemes is to dualize
corner-cutting algorithms (Paluszny et al., 1994). This approach
leads to more general necessary and sufficient convergence criteria.

In this paper we want to define interpolatory refinement schemes
in a more systematic fashion. The major principle is the following:
We are looking for refinement schemes for which, given a polygon
Pm, the refined polygorPy.1 is as smooth as possibldn order
to be able to compare the “smoothness” of two polygons we de-
fine functionalsE (Pmy.1) which measure the total amount of (dis-

crete) strain energy &®m,1. The refinement operator then simply

1 such that this functional becomes a

minimum.

An important motivation for this approach is that in practice
good approximations to the final interpolating curves should be
achieved with little computational effort, i.e., maximum smooth-
ness after a minimal number of refinement steps is wanted. In non-
discrete curve design based, e.g., on splines, the concept of defining
interpolating curves by the minimization of some energy functional
(fairing) is very familiar (Meier & Nowacki, 1987), (Sapidis, 1994).

This basic idea of making a variational approach to the defini-
tion of refinement schemes can also be used for the definition of
schemes which produce smooth surfaces by refining a given trian-
gular or quarilateral net. However, due to the global dependence
of the new points from the given net, the convergence analysis of
such schemes strongly depends on the topology of the net to be
refined and is still an open question. Numerical experiments with
such schemes show that this approach is very promising. In this
paper we will only address the analysis of univariate schemes.

1.2 Known results

Given an arbitrary (open/closed) polygBm = (p"), thedifference
polygonAKPy, denotes the polygon whose vertices are the vectors
k

5 (

In (Kobbelt, 1995b) the following characterization of sequences
of polygons(Pm) generated by the iterative application of an inter-
polatory refinement scheme is given:

Kk .
) (o

AkpM: i

Lemmal Let (Py) be a sequence of polygons. The scheme by
which they are generated is an interpolatory refinement scheme

(e, pM = pgi‘+1 for all i and m) if and only if for all mk € N

the condition

m+1
2i+]

kem e (K) Ak
Ap = <.)Ap
"3

holds for all indices i of the polygon Py,



Also in (Kobbelt, 1995b), the following sufficient convergence
criterion is proven which we will use in the convergence analysis in
the next sections.

Theorem 2 Let (Pm) be a sequence of polygons generated by
the iterative application of an arbitrary interpolatory refinement
scheme. If

S ([2TAH Pl < 0
m=0
for some le N then the sequend®n) uniformly converges to a
k-times continuously differentiable curke.

This theorem holds for all kinds of interpolatory schemes on
open and closed polygons. However, in this paper we will only
apply it to linear schemes whose support is global.

1.3 A variational approach to interpolatory
refinement

In this and the next two sections we focus on the refinement of

closedpolygons, since this simplifies the description of the refine-
ment schemes. Open polygons will be considered in Section 1.6.
Let Pm=(pg,...,pp ;) be a given polygon. We wafty, 1 =

(pEL,...,p3™) to be the smoothest polygon for which the inter-

polation conditiorpgrrl = p{" holds. Since the roughness at some
vertexpierl is a local property we measure it by a an operator

k

K(p") = 3 ajpllity.
]:

The coefficientsx; in this definition can be an arbitrary finite se-

quence of real numbers. The indices of the vertit8s! are taken
modulo2n according to the topological structure of the closed poly-
gonPp;1. To achieve full generality we introduce the shiuch

that K (p™**) depends omp{™*,...,pM™! . Every discrete mea-

sure of roughnesK is associated with a characteristic polynomial
k .

Zocxj z.

j=

Our goal is to minimize the total strain energy over the whole
polygonPp,.1. Hence we define

a(z)

2n-1
E(Pmer) = 3 K(pM™?

to be the energy functional which should become minimal. Since
the pointsprz?+l of Pmy1 with even indices are fixed due to the in-
terpolation condition, the point%‘jj with odd indices are the only
free parameters of this optimization problem. The unique minimum
of the quadratic functional is attained at the common root of all par-
tial derivatives:

@)

] K 9
~—mrt E(Pm+1) = —1 KPS 3 2)?
angHJ_rll i; (al:)rzrlpjjL 214+1+4r—i

@)

£ S +1
. . nM
Z'Z)GI _ZOGJ Palt1-it
=l j=

m+1
Po 14

K
ZiZZkBi

with the coefficients

k—i

_200( § Qi
]:

Hence, the strain enerdy(Pms1) becomes minimal if the new
pointspg?ﬂ are the solution of the linear system

Bi=pBi= i=0,...,k 3)

m+1
Bo B2 Pa B2 1
B2 Bo B2 Ba p3- _
P @
—B1 —B1 —Bs —B3 BE
—Bs —B1 —B1 —Bs 1
: : : pnm-,l

which follows from (2) by separation of the fixed poirpig+l =
p™ from the variables. Here, both matrices are circulant and (al-
most) symmetric. A consequence of this symmetry is that the new
points do not depend on the orientation by which the vertices are
numbered (left to right or vice versa).

To emphasize the analogy between curve fairing and interpola-
tory refinement by variational methods, we call the equation

=0,...,n-1 (5)

k
Z Bi pg?illﬁ =0, I
i=—k
the Euler-Lagrange-equatian

Theorem 3 The minimization of BPy,;1) has a well-defined solu-
tion if and only if the characteristic polynomiai(z) for the local
measure K has no diametric roots=z+w on the unit circle with
Arg(w) € TN /n. (Proof to be found in the original paper)

Remark The setntN /2™ becomes dense in R for increasing re-
finement depthm — . Since we are interested in the smoothness
properties of the limiting curv®., we should drop the restriction
that the diametric roots have to have Ao € N /n. Forstability
reasons we requir(z) to have no diametric roots on the unit circle
atall.

The optimization by which the new points are determined is a
geometric process. In order to obtain meaningful schemes, we have
to introduce more restrictions on the energy functioats on the
measures of roughneks

For the expressioK?(p;) to be valid,K has to be vector valued,
i.e., the sum of the coefficientg has to be zero. This is equivalent
toa(1l) =0. Since

i—i—kBi - ii)jiaiaj - <,—§oaj>2

the sum of the coefficienf§ also vanishes in this case aaffine
invariance of the (linear) scheme is guaranteed because constant
functions are reproduced.

1.4

In the last section we showed that the minimization of a quadratic
energy functional (1) leads to the conditions (5) which determine
the solution. Dropping the variational background, we can more
generally prescribe arbitrary real coefficierfisy,...,Bk (with

Implicit refinement schemes



B_i = Bj to establish symmetry argi; = O for affine invariance) The partial derivatives take a very simple form in this case
and define an interpolatory refinement scheme which chooses the

new pointspgi‘ﬂ of the refined polygoPy1 such that the homo- k 0 Akgml (12
geneous constraints Jom L Ex(Pmi1) = Z) JomL 1A 1l
241 i=0 OP2141
k
S Bpyi; =0 1=0..n-1 6)
iZ=k -

K i (K
2 -%(_1)k+l <I) Akpg?i]i_i
are satisfied. We call these schemawlicit refinement schemes 1=
to emphasize the important difference to other refinement schemes
where usually the new points are computed by one orepticitly 2(—1)kA2k mt+1
given rules (cf. the ternmplicit curvesfor curves represented by Pa41-k:
f(x,y) = 0). The stationary refinement schemes are a special case

of the implicit schemes wheig;; = ;0. In general, the implicit and the corresponding Euler-Lagrange-equation is
schemes are non-stationary since the resulting weight coefficients —
by which the new pointp+7 are computed depend on the number A%poti =0, I=0,...,n—1 (8)

of vertices inPn. i o 1
In (Kobbelt, 1995b) a general technique is presented which al-  Where, again, the indices of tipf"* are takermodulo2n. The
lows to analyse the smoothness properties of the limiting curve gen- characteristic polynomial of the underlying roughness meakure
erated by a given implicit refinement scheme. is a(z) = (z— 1)¥ and thus solvability and affine invariance of the
The next theorem reveals that the class of implicit refinement refinement scheme are guaranteed. The solution of (8) only requires
scﬂemes is not essentially larger than the class of variational the inversion of a banded circulant matrix with bandwidﬂ%?Jrl.
schemes.
_ _ Theorem 5 The refinement scheme based on the minimization of
Theorem 4 LetB_y, ..., Bk be an arbitrary symmetric set of real g, in (7) produces at least Gcurves. (Proof to be found in the
coefficientsB_; = 3j). Then there always exists a (potentially com-  original paper)
plex valued) local roughness measure K such that (6) is the Euler-
Lagrange-equation corresponding to the minimization of the energy  |n order to prove even higher regularities of the limiting curve
functional (1). (Proof to be found in the original paper) one has to combine more refinement steps. In (Kobbelt, 1995b)
a simple technique is presented that allows to do the convergence
Remark We do not consider implicit refinement schemes with analysis of such multi-step schemes numerically. Table 1 shows
complex coefficient$; since then (6) in general has no real solu- some results wheredenotes the number of steps that have to be
tions. combined in order to obtain these differentiabilities.
In analogy to the non-discrete case where the minimization of the
Example To illustrate the statement of the last theorem we look '”ztf?zra' over the squa_rddth _d(_arlvatlve_ has pIEcewISe _p_olynomlal
at the 4-point scheme of (Dubuc, 1986). This is a stationary re- ¢~ solutions (B-splines), itis very likely that the limiting curves

finement scheme where the new poips"! are computed by the generated by iterative minimization Bf, are actually irC%~2 too.
rule +1 The results given in Table 1 can be improved by combining more

thanr steps. Fok = 2,3, however, sufficiently many steps have
already been combined to verify, ¢ C%~2,

9 1
pﬁﬁ ~ 16 (P"+pme) — 16 (P21 +Pi12)

r [diffty [ k [r [diffty |
2 c? 7 16] cl©
1

The scheme can be written in implicit form (6) wikh= 3 and
Biz =1, B2 =0, P11 = -9, Bo = 16 since the common factor

k
2
Tla is not relevant. The roots @8(z) arez; = ... =z =1 and 3|11 C: 8 | 4 Ci;
= —2++/3. From the construction of the last proof we obtain 42 c 9 16 C
%6 P 5| 7] C |[10]| 4] c¥
6| 3 (& 11| 6| CI®

a(z) = (2+V3)— (3+V12) 24+ V32 +Z

as one possible solution. Hence, the quadratic strain energy Table 1: Lower bounds on the differentiability Bf, generated by
which is minimized by the 4-point scheme is based on the local iterative minimization oEy(Pn).
roughness estimate

K(pi) = (2+ ﬁ) pi— (3+Vv12)pit1+ V3pis2+Pisa. For illustration and to compare the quality of the curves gener-
ated by these schemes, some examples are given in Fig. 3. The
PR : curves result from applying different schemes to the initial data

1.5 Minimization of differences Po=(...,0,1,0,...). We only show the middle part of one peri-
Theorem 2 asserts that a fast contraction rate of some higher differ-odic interval ofP,. As expected, the decay of the function becomes
ences is sufficient for the convergence of a sequence of polygons toslower as the smoothness increases.
a (k times) continuously differentiable limit curve. Thus it is nat-
ural to look for refinement schemes with a maximum contraction Remark Considering Theorem 2 it would be more appropri-
of differences. This obviously is an application of the variational 5ia 19 minimize the maximum diﬁerenqu Pm||e instead of
approach. For the quadratic energy functional we make the ansatz ||Ak Pl However, this leads to non-linear refinement schemes

on—1 which are both, hard to compute and difficult to analyse. More-
Ex(Pmy1) = ZO \|Akp{“+1||2. ) over, in (Kobbelt, 1995a) it is shown that a contraction rate of
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Figure 3: Discrete curvature plots of finite approximations to the curves generated by the four-point Bcfresne C1) and the iterative
minimization ofE; (Pe, € C?), Ez (Pw € C*) andEs (Pw € C7).

| APl = O(2-™K) implies || AK Pyl = O(2-™(k=8)) for ev- Let E be a given quadratic energy functional. The solution of
ery e > 0. It is further shown that| AKPp|| = O(2-™K) is the its minimization over the windowp," ,...,p"} ;. is computed by
theoretical fastest contraction which can be achieved by interpola- solving an Euler-Lagrange-equation

tory refinement schemes. Hence, the minimization| &K Pr||e

cannot improve the asymptotic behavior of the contraction. B (przrﬁ.%+2i)ir:7r =C (pmi)irir- )

The matrix ofB~1C can be computed explicitly and the weight
coefficients by which a new poirpgill is computed, can be read

The convergence analysis of variational schemes in the case of operoff from the corresponding row iB~1C. Since the coefficients
finite polygons is much more difficult than it is in the case of closed depend orE andr only, this construction yields a stationary refine-
polygons. The problems arise at both ends of the polyddns ment scheme.
where the regular topological structure is disturbed. Therefore, we  For such local schemes the convergence analysis is independent
can no longer describe the refinement operation in terms of Toeplitz from the topological structure (open/closed) of the polygons to be
matrices but we have to use matrices which are Toeplitz matrices al-refined. The formalisms of (Cavaretta et al., 1991), (Dyn & Levin,
most everywhere except for a finite number of rows, i.e., except for 1990) or (Kobbelt, 1995b) can be applied.
the first and the last few rows. Minimizing the special energy function&y(P) from (7) over
However, one can show that in a middle region of the polygon open polygons allows the interesting observation that the resulting
to be refined the smoothing properties of an implicit refinement refinement scheme has polynomial precision of degred. This
scheme applied to an open polygon do not differ very much from is obvious since for points lying equidistantly parameterized on a
the same scheme applied to a closed polygon. This is due to the facpolynomial curve of degrek — 1, all k-th differences vanish and
that in both cases the influence of the old popftson a new point Ex(P) = 0 clearly is the minimum of the quadratic functional.

prznjtrll decrease exponentially with increasing topological distance ~_Since the 2+ 2 points which form the subpolygon

li — j| for all asymptotically stable schemes (Kobbelt, 1995a). P, »Phgy, Uniquely define an interpolating polynomial

For the refinement schemes which iteratively minimize forward Of degree 2+ 1, it follows that the local schemes based on
differences, we can at least prove the following. the minimization ofEy(P) are identical fork > 2r + 2. These

schemes coincide with the Lagrange-schemes of (Deslauriers &
Theorem 6 The interpolatory refinement of open polygons by it- Dubuc, 1989). Notice th&k < 4r 42 is necessary because higher
eratively minimizing thek-th differences, generates at leadt¢- differences are not possible on the polygug?ﬂr),...,przn(ﬁprr)
curves. (Proof to be found in the original paper) and minimizingEx(P) = 0 makes no sense.

The statement of this theorem only gives a lower bound for the _1he local variational schemes provide a nice feature for prac-
differentiability of the limiting curveP.,. However, the author con-  tic@l purposes. One can use the refinement rules defined by the
jects that the differentiabilities agree in the open and closed polygon Ccoefficients in the rows oB~*C in (9) to compute points which

case. For special cases we can prove better results. subdivide edges near the ends of open polygons. Pure stationary
refinement schemes do not have this option and one therefore has

Theorem 7 The interpolatory refinement of open polygons by it- to deal withshrinking ends This means one only subdivides those
eratively minimizing the second differences, generates at least C  edges which allow the application of the given subdivision mask
curves. (Proof to be found in the original paper) and cuts off the remaining part of the unrefined polygon.

If k> 2r + 2 then the use of these auxiliary rules causes the lim-
iting curve to have a polynomial segment at both ends. This can
be seen as follows. L&y = (pg,...,pﬂ) be a given polygon and
By now we only considered refinement schemes which are baseddenote the polynomial of degree 21 < k— 1 uniformly interpo-
on aglobal optimization problem. In order to construct local re- lating the points;t)g,...,p‘ZJrJrl by f(x).
finement schemes we can restrict the optimization to some local  The first vertex of the refined polygd®y which not necessarily
subpolygon. This means a new pop{jj:ll is computed by mini- lies onf(x) is p%r+3. Applying the same refinement scheme itera-
mizing some energy functional ovemandowp(" ,...,p" ;. As tively, we see that ipg"m is the first vertex oPm which does not lie
the index varies, the window is shifted in the same way.

1.6 Interpolatory refinement of open polygons

1.7 Local refinement schemes



on f(x) thenpg“"i = przngnl_zf_l is the first vertex oPp, 1 with this [Dyn etal., 1987] Dyn, N. and Gregory, J. and Levin, D. (1987),
property. Lety = 2r + 2 and consider the sequence A 4-point interpolatory subdivision scheme for curve de-
sign, CAGD 4, 257-268
m .
lim é_m = (2r4+2)—(2r+1) lim lefl =1 [Dyn & Levin, 1990] Dyn, N. and Levin, D. (1990), Interpolating
m-3o0 2 M= subdivision schemes for the generation of curves and sur-
o ) faces, in: HauBmann W. and Jetter K. eddultivari-
Hence, the limiting curvé®,, has a polynomial segmerit(x) ate Approximation and Interpolatigmirkhauser Verlag,

between the pointpg and p?. An analog statement holds at the Basel

opposite end betweepf_; andp®.

This feature also arises naturally in the context of Lagrange-
schemes where the new points near the ends of an open polygon
can be chosen to lie on the first or last well-defined polynomial. It

can be used to exactly compute the derivatives at the endpdnts [Dyn, 1991] Dyn, N. (1991), Subdivision schemes in computer

[Dyn etal., 1992] Dyn, N. and Levin, D. and Liu, D. (1992), Inter-
polatory convexity-preserving subdivision schemes for
curves and surfaces, CAD 24, 221-216

andp? of the limiting curve and it also provides the possibility to aided geometric design, in: Light, W. eddvances in

smoothly connect refinement curves and polynomial splines. Numerical Analysis Il, Wavelets, Subdivisions and Ra-
dial Functions Oxford University Press

1.8 Computational Aspects [Golub & Van Loan, 1989] Golub, G. and Van Loan, C. (1989),

Since for the variational refinement schemes the computation of the Matrix ComputationsJohn Hopkins University Press

new pointspsr}7 involves the solution of a linear system, the algo- [Kobbelt, 1995a] Kobbelt, L. (1995alterative Erzeugung glatter

rithmic structure of these schemes is slightly more complicated than Interpolanten Universitit Karlsruhe

itis in the case of stationary refinement schemes. However, for the
refinement of an open polygd?y, the computational complexity is  [Kobbelt, 1995b] Kobbelt, L. (1995b), Using the Discrete Fourier-
still linear in the length oPr. The matrix of the system that has Transform to Analyze the Convergence of Subdivision
to be solved, is a banded Toeplitz-matrix with a small number of Schemes, Appl. Comp. Harmonic Anal. 5 (1998), pp. 68—
pertubations at the boundaries.

In the closed polygon case, the best we can do is to solve the
circulant system in the Fourier domain. In particular, we transform [Kobbelt, 1995c] Kobbelt, L. (1995c), Interpolatory Refinement is
the initial polygonPgy once and then performm refinement steps Low Pass Filtering, in Daehlen, M. and Lyche, T. and
in the Fourier domain where the convolution operator becomes a Schumaker, L. eds., Math. Meth in CAGD Il

diagonal operator. The refined spectrﬁ’m is finally transformed
back in order to obtain the resu,. The details can be found in
(Kobbelt, 1995c). For this algorithm, the computational costs are

dominated by the discrete Fourier transformatio@.afwhich can

be done inO(nlog(n)) = O(2™m) steps. This is obvious since the  [Le Méhau€ & Utreras, 1994] Le Mhau€ A. and Utreras, F.

numbern = 2™ng of points in the refined polygofm allows to (1994), Convexity-preserving interpolatory subdivision,
apply msteps of the fast Fourier transform algorithm. CAGD 11, 17-37

The costs for computingny, are thereforéd(m) per point com-
pared toO(1) for stationary schemes. However, since in practice [Paluszny et al., 1994] Paluszny M. and Prautzsch H. anafch”
only a small number of refinement steps are computed, the constant M. (1994), Corner cutting and interpolatory refinement,
factors which are hidden within these asymptotic estimates are rele- Preprint
vant. Thus, the fact that implicit schemes need a smaller bandwidth
than stationary schemes to obtain the same differentiability of the [Sapidis, 1994] Sapidis, N. (1994pesigning Fair Curves and
limiting curve (cf. Table 1) equalizes the performance of both. SurfacesSIAM, Philadelphia

In the implementation of these algorithms it turned out that all ) . . . .
these computational costs are dominated by the ‘administrative’ [Widom, 1965] Widom, ~H. (1965), Toeplitz matrices, in:
overhead which is necessary, e.g., to build up the data structures. Hirschmann, ‘1. ed., Studies in Real and Complex
Hence, the differences in efficiency between stationary and implicit Analysis MAA Studies in Mathematics 3
refinement schemes can be neglected.

[Meier & Nowacki, 1987] Meier, H. and Nowacki, H. (1987), In-
terpolating curves with gradual changes in curvature,
CAGD 4, 297-305

References

[Cavaretta et al., 1991] Cavaretta, A. and Dahmen, W. and Mic-
chelli, C. (1991), Stationary Subdivision, Memoirs of the
AMS 93, 1-186

[Clegg, 1970] Clegg, J. (1970YariationsrechnungTeubner Ver-
lag, Stuttgart

[Deslauriers & Dubuc, 1989] Deslauriers, G. and Dubuc, S.
(1989), Symmetric iterative interpolation processes,
Constructive Approximation 5, 49-68

[Dubuc, 1986] Dubuc, S. (1986), Interpolation through an iterative
scheme, Jour. of Mathem. Anal. and Appl. 114, 185-204



Il Discrete Fairing

Many mathematical problems in geometric modeling are merely stationary schemes that exploit the piecewise regular structure of
due to the difficulties of handling piecewise polynomial parameter- iteratively refined meshes [2, 4, 9], there are more complex geo-
izations of surfaces (e.g., smooth connection of patches, evaluationmetric schemes [15, 8] that combine the subdivision paradigm with
of geometric fairness measures). Dealing with polygonal meshes isthe concept of optimal design by energy minimizati€air(ng).
mathematically much easier although infinitesimal smoothness can The technical and practical advantages provided by the repre-
no longer be achieved. However, transferring the notion of fairness sentation of surfaces in the form of polygonal meshes stem from
to the discrete setting of triangle meshes allows to develop very the fact that we do not have to worry about infinitesimal inter-patch
efficient algorithms for many specific tasks within the design pro- smoothness and the refinement rules do not have to rely on the ex-
cess of high quality surfaces. The use of discrete meshes insteadstence of a globally consistent parameterization of the surface. In
of continuous spline surfaces is tolerable in all applications where contrast to this, spline based approaches have to introduce com-
(on an intermediate stage) explicit parameterizations are not nec- plicated non-linear geometric continuity conditions to achieve the

essary. We explain the basic techniquealisicrete fairingand give flexibility to model closed surfaces of arbitrary shape. This is due
a survey of possible applications of this approach. to the topologically rather rigid structure of patches with triangular
or quadrilateral parameter domain and fixed polynomial degree of
The original paper has been published in: cross boundary derivatives. The non-linearity of such conditions
makes efficient optimization difficult if not practically impossible.
L. Kobbelt On discrete meshes however, we can deldaal interpolants ac-
Variational Design with Parametric Meshes cording to local parameterizationsh@rts which gives the freedom
of Arbitrary Topology to adapt the parameterization individually to the local geometry and
in Creating fair and shape preserving curves topology.
and surfaces, Teubner, 1998 In the following we will shortly describe the conceptditcrete
fairing which is an efficient way to characterize and compute dense
2.1 Introduction point sets on high quality surfaces that observe prescribed interpo-

lation or approximation constraints. We then show how this ap-

Piecewise polynomial spline surfaces have been the standard repreproach can be exploited in several relevant fields within the area of
sentation for free form surfaces in all areas of CAD/CAM over the free form surface modeling.
last decades (and still are). However, although B-splines are op- The overall objective behind all the applications will be the at-
timal with respect to certain desirable properties (differentiability, temptto avoid, bypass, or at least delay the mathematically involved
approximation order, locality,. . ), there are several tasks that can- generation of spline CAD-models whenever it is appropriate. Espe-
not be performed easily when surface parameterizations are basedially in the early design stages it is usually not necessary to have an
on piecewise polynomials. Such tasks include the construction of explicit parameterization of a surface. The focus on polygonal mesh
globally smooth closed surfaces and the shape optimization by min- representations might help to free the creative designer from being
imizing intrinsically geometric fairness functionals [5, 12]. confined by mathematical restrictions. In later stages the conver-

Whenever it comes to involved numerical computations on free sion into a spline model can be based on more reliable information
form surfaces — for instance in finite element analysis of shells — about the intended shape. Moreover, since technical engineers are
the geometry is usually sampled at discrete locations and convertedused to performing numerical simulations on polygonal approxima-
into a piecewise linear approximation, i.e., into a polygonal mesh. tions of the true model anyway, we also might find short-cuts that

Between these two opposite poles, i.e.,¢batinuousepresen- allow to speed up the turn-around cycles in the design process, e.g.,
tation of geometric shapes by spline patches andlibereterep- we could alter the shape of a mechanical part by modifying the FE-
resentation by polygonal meshes, there is a compromise emergingmesh directly without converting back and forth between different
from the theory osubdivision surfacef]. Those surfaces are de- CAD-models.
fined by abase meshoughly describing its shape, andedinement
rule that allows one to split the edges and faces in order to obtain a

finer and smoother version of the mesh. 2.2 Fairing triangular meshes

Subdivision schemes started as a generalizatifmaffinsertion  The observation that in many applications the global fairess of a
for uniform B-splines [11]. Consider a control megh;] and the surface is much more important than infinitesimal smoothness mo-
knot vectorsui] = [ih] and[v] = [ihy] defining a tensor product  tjvates thediscrete fairingapproach [10]. Instead of requirir@*

B-spline surfac&. The same surface can be given with respect to or G2
the refined knot vectorRl] = [ihy/2] and V] = [ihy/2] by com-
puting the corresponding control verticis j], eacht; j being a
simple linear combination of original verticeg;. It is well known

that the iterative repetition of this process generates a sequence o
meshe<, which converges to the spline surfagétself.

continuity, we simply approximate a surface by a plain trian-

gularC%— mesh. On such a mesh we can think of the (discrete) cur-

vature being located at the vertices. The téairing in this context
eans to minimize these local contributions to the total (discrete)
urvature and to equalize their distribution across the mesh.

The generic subdivision paradigm generalizes this concept by diffveyreer?ggsr?/i/(iltrkr:erl(tfsptz?:?ltg:rrc?é:{liﬁszgrﬁgterirgp;laerrﬁgtgrli\ggl?gn

e?"OWl”g arbitrary rl_JIes for the computation .Of the new control ver- This parameterization can be found by estimating a tangent plane
ticesG;,j from the givenc; ;. The generalization also includes that -

: or the normal vectonyp) at p and projecting the neighboring
we are no longer restricted to tensor product meshes but can use ? ( " P . ; :
rules that are adapted to the different topological special cases ineverncesp. into that plane. The projected points yield the parameter

; ) - values(u;,V;) if represented with respect to an orthonormal basis
meshes with arbitrary connectivity. As a consequence, we can USEra &} spanning the tangent plane

any (manifold) mesh for the base mesh and generate smooth sur-
faces by iterative refinement. i—p = uey+vie +dng.

The major challenge is to find appropriate rules that guarantee pi—P Hu v
the convergence of the mest@&g generated during the subdivision ~ Another possibility is to assign parameter values according to the
process to a smooth limit surfade= C,. Besides the classical  lengths and the angles between adjacent edtissréte exponential



map [15, 10].

To obtain reliable curvature information pti.e., second order
partial derivatives with respect to the locally isometric parameteri-
zationyy, we solve the normal equation of the Vandermonde system

T
vTv % fuu, fuvs % fw] =V [di]i

with V = [uZ,uvi,V2]; by which we get the best approximating

guadratic polynomial in the least squares sense. The rows of the in-

verse matrixV T V)~VT =: [a; ;] by which the Taylor coefficients

f. of this polynomial are computed from the déti;, contain the

coefficients of the corresponding divided difference operdiors
Computing a weighted sum of the squared divided differences is

equivalent to the discrete sampling of the corresponding continuous

fairness functional. Consider for example

/SK§+Kgds

which is approximated by

> @ (Iruwtpy - o) 2+
g (10)

2[Fu(P; — PIP + [Tl —pi)uz).

Notice that the value of (10) is independent of the particular choices
{ey, e} for each vertex due to the rotational invariance of the func-

tional. The discrete fairing approach can be understood as a gen-

eralization of the traditional finite difference method to parametric

When solving the sparse linear system by iterative methods we
observe rather slow convergence. This is due to the low-pass fil-
ter characteristics of the iteration steps in a Gaul3-Seidel or Jacobi
scheme. However since the mesh on which the optimization is per-
formed came out of a uniform refinement of the given mesibdi-
vision connectivitywe can easily find nested grids which allow the
application of highly efficient multi-grid schemes [6].

Moreover, in our special situation we can generate sufficiently
smooth starting configurations by midpoint insertion which allows
us to neglect the pre-smoothing phase and to reduce the V-cycle of
the multi-grid scheme to the alternation of binary subdivision and
iterative smoothing. The resulting algorithm has linear complexity
in the number of generated triangles.

The advantage of this discrete approach compared to the classi-
cal fair surface generation based on spline surfaces is that we do not
have to approximate a geometric functional that uses true curvatures
by one which replaces those by second order partial derivatives with
respect to the fixed parameterization of the patches. Since we can
use a custom tailored parameterization for each point evaluation of
the second order derivatives, we can choose this parameterization
to be isometric — giving us access to the true geometric functional.

Figure 4 shows an example of a surface generated this way. The
implementation can be done very efficiently. The shown surface
consists of about 50K triangles and has been generated on a SGI
R10000 (195MHz) within 10 seconds. The scheme is capable of
generating an arbitrarily dense set of points on the surface of min-
imal energy. It is worth to point out that the scheme works com-
pletely automatic: no manual adaption of any parameters is nec-
essary, yet the scheme produces good surfaces for a wide range of

input data.

meshes where divided difference operators are defined with respec2. 4 Applications to interactive modeling

to locally varying parameterizations. In order to make the weighted
sum (10) of local curvature values a valid quadrature formula, the
weightswy have to reflect the local area element which can be ap-
proximated by observing the relative sizes of the parameter trian-
gles in the local chartgy : pi —p — (U, vi).

Since the objective functional (10) is made up of a sum over
squared local linear combinations of vertices (in fact, of vertices
being direct neighbors of one central vertex), the minimum is char-
acterized by the solution of a global but sparse linear system. The
rows of this system are the partial derivatives of (10) with respect
to the movable verticeg;. Efficient algorithms are known for the
solution of such systems [6].

2.3 Applications to free form surface design

When generating fair surfaces from scratch we usually prescribe a
set of interpolation and approximation constraints and fix the re-
maining degrees of freedom by minimizing an energy functional.
In the context of discrete fairing the constraints are given by an ini-
tial triangular mesh whose vertices are to be approximated by a fair
surface being topologically equivalent. The necessary degrees of
freedom for the optimization are obtained by uniformly subdivid-
ing the mesh and thus introducing nevovablevertices.

The discrete fairing algorithm requires the definition of a local
parameterizatiopl, for each vertex including the newly inserted

For subdivision schemes we can use any triangular mesh as a con-
trol mesh roughly describing the shape of an object to be modeled.
The flexibility of the schemes with respect to the connectivity of the
underlying mesh allows very intuitive modifications of the mesh.
The designer can move the control vertices just like for Bezier-
patches but she is no longer tied to the common restrictions on the
connectivity which is merely a consequence of the use of tensor
product spline bases.

When modeling an object by Bezier-patches, the control vertices
are the handles to influence the shape and the de Casteljau algorithm
associates the control mesh with a smooth surface patch. In our
more general setting, the designer can work oaritrary triangle
mesh and the connection to a smooth surface is provided by the
discrete fairing algorithm. The advantages are that control vertices
are interpolated which is a more intuitive interaction metaphor and
the topology of the control structure can adapt to the shape of the
object.

Figure 5 shows the model of a mannequin head. A rather coarse
triangular mesh allows already to define the global shape of the
head (left). If we add more control vertices in the areas where more
detail is needed, i.e., around the eyes, the mouth and the ears, we
can construct the complex surface at the far right. Notice how the
discrete fairing scheme does not generate any artifacts in regions
where the level of detail changes.

ones. However, projection into an estimated tangent plane does not

work here, because the final positions of the new vertices are ob-
viously not known a priori. In [10] it has been pointed out that
in order to ensure solvability and stability of the resulting linear
system, it is appropriate to define the local parameterizations (lo-
cal metrics) for the new vertices fendingthe metrics of nearby
vertices from the original mesh. Hence, we only have to estimate
the local charts covering the original vertices to set-up the linear

2.5 Applications to mesh smoothing

In the last sections we saw how the discrete fairing approach can be
used to generate fair surfaces that interpolate the vertices of a given
triangular mesh. A related problem is to smooth out high frequency
noise from a giveretailedmesh without further refinement. Con-
sider a triangulated surface emerging for example from 3D laser

system which characterizes the optimal surface. This can be doneScanning or iso-surface extraction out of CT volume data. Due to

prior to actually computing a solution and we omit an additional
optimization loop over the parameterization.

measurement errors, those surfaces usually show oscillations that
do not stem from the original geometry.



Figure 4: A fair surface generated by the discrete fairing scheme. The flexibility of the algorithm allows to interpolate rather complex data by
high quality surfaces. The process is completely automatic and it took about 10 sec to compute the refined mesh with 50K triangles. On the
right you see the reflection lines on the final surface.
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Figure 5: Control meshes with arbitrary connectivity allow to adapt the control structure to the geometry of the model. Notice that the
influence of one control vertex in a tensor product mesh is always rectangular which makes it difficult to model shapes with non-rectangular
features.

Constructing the above mentioned local parameterizations, we
are able to quantify the noise by evaluating the local curvature.
Shifting the vertices while observing a maximum tolerance can re-
duce the total curvature and hence smooth out the surface. From &
signal processing point of view, we can interpret the iterative solv-
ing steps for the global sparse system as the application of recursive
digital low-pass filters [13]. Hence it is obvious that the process ;( '
will reduce the high frequency noise while maintaining the low fre- | i
quency shape of the object. i

Figure 6 shows an iso-surface extracted from a CT scan of an|
engine block. The noise is due to inexact measurement and insta-*§
bilities in the extraction algorithm. The smoothed surface remains
within a tolerance which is of the same order of magnitude as the
diagonal of one voxel in the CT data.

2.6 Applications to surface interrogation Figure 6: An iso-surface extracted from a CT scan of an engine
o ] ] ] ) block. On the left, one can clearly see the noise artifacts due to
Deriving curvature information on a discrete mesh is not only use- measurement and rounding errors. The right object was smoothed
ful for fair interpolation or post-processing of measured data. It can by minimizing the discrete fairing energy. Constraints on the posi-
also be used to visualize artifacts on a surface by plotting the color tional delocation were imposed.
coded discrete curvature directly on the mesh. Given for example
the output of the numerical simulation of a physical process: since
deformation has occurred during the simulation, this output typi-

- ; ; Using classical techniques from differential geometry would re-
gg!ﬁﬁg{g‘fi Q/:Egﬁlgf a discrete mesh and no continuous surfaceg, ire (o fit an interpolating spline surface to the data and then vi-

sualize the surface quality by curvature plots. The availability of



samples of second order partial derivatives with respect to locally
isometric parameterizations at every vertex enables us to show this
information directly without the need for a continuous surface.
Figure 7 shows a mesh which came out of the FE-simulation of
a loaded cylindrical shell. The shell is clamped at the boundaries
and pushed down by a force in normal direction at the center. The
deformation induced by this load is rather small and cannot be de-
tected by looking, e.g., at the reflection lines. The discrete mean
curvature plot however clearly reveals the deformation. Notice that
histogram equalization has been used to optimize the color contrast :
of the plot. i

2.7 Applications to hole filling and blending _ - _ _ )
Figure 8: The original data on the left is very sparse in the mid-

Another area where the discrete fairing approach can help is thedle region of the object. Triangulating the points in space and dis-
filling of undefined regions in a CAD model or in a measured data cretely fairing the iteratively refined mesh recovers more informa-
set. Of course, all these problems can be solved by fairing schemesion which makes least squares approximation much easier. On the
based on spline surfaces as well. However, the discrete fairing ap-right, reflection lines on the resulting surface are shown.

proach allows one to split the overall (quite involved) task into sim-

ple steps: we always start by constructing a triangle mesh defining

the global topology. This is easy becauseGioor higher bound- 2.8 Conclusion

ary conditions have to be satisfied. Then we can apply the discrete

fairing algorithm to generate a sufficiently dense point set on the ob- In this paper we gave a survey of currently implemented applica-
jective surface. This part includes the refinement and energy mini- tions of the discrete fairing algorithm. This general technique can
mization but it is almost completely automatic and does not have to be used in all areas of CAD/CAM where an approximation of the
be adapted to the particular application. In a last step we fit poly- actual surface by a reasonably fine triangular mesh is a sufficient
nomial patches to the refined data. Here we can restrict ourselvesrepresentation. If compatibility to standard CAD formats matters, a
to pure fitting since the fairing part has already been taken care of spline fitting post-process can always conclude the discrete surface
during the generation of the dense data. In other words, the discretegeneration or modification. This fitting step can rely on more infor-
fairing has recovered enough information about an optimal surface mation about the intended shape than was available in the original
such that staying as close as possible to the generated points (in @etting since a@enseset of points has been generated.

least squares sense) is expected to lead to high quality surfaces. To As we showed in the previous sections, mesh smoothing and hole
demonstrate this methodology we give two simple examples. filling can be done on the discrete structirefore switching to a

First, consider the point data in Figure 8. The very sparsely continuous representation. Hence, the bottom line of this approach
scattered points in the middle region make the task of interpolation is to do most of the work in the discrete setting such that the math-
rather difficult since the least squares matrix for a locally supported ematically more involved algorithms to generate piecewise poly-
B-spline basis might become singular. To avoid this, fairing terms nomial surfaces can be applied to enhanced input data with most
would have to be included into the objective functional. This how- common artifacts removed.
ever brings back all the problems mentioned earlier concerning the  We do not claim that splines could ever be completely replaced
possibly poor quality of parameter dependent energy functionals by polygonal meshes but in our opinion we can save a considerable
and the prohibitive complexity of non-linear optimization. amount of effort if we use spline models only where it is really

Alternatively, we can connect the points to build a spatial tri- necessary and stick to meshes whenever it is possible. There seems
angulation. Uniform subdivision plus discrete fairing recovers the to be a huge potential of applications where meshes do the job if we
missing information under the assumption that the original surface find efficient algorithms.
was sufficiently fair. The un-equal distribution of the measured data ~ The major key to cope with the genuine complexity of highly
points and the strong distortion in the initial triangulation do not detailed triangle meshes is the introduction of a hierarchical struc-
cause severe instabilities since we can define individual parameteri-ture. Hierarchies could emerge from classical multi-resolution tech-
zations for every vertex. These allow one to take the local geometry niques like subdivision schemes but could also be a by-product of
into account. mesh simplification algorithms.

Another standard problem in CAD is thending or filleting An interesting issue for future research is to find efficient and
between surfaces. Consider the simple configuration in Figure 9 numerically stable methods to enforce convexity preservation in the
where several plane faces (dark grey) are to be connected smoothlyfairing scheme. At least local convexity can easily be maintained
We first close the gap by a simple coarse triangular mesh. Suchby introducing non-linear constraints at the vertices.

a mesh can easily be constructed for any reasonable configuration Prospective work also has to address the investigation of explicit
with much less effort than constructing a piecewise polynomial rep- and reliable technigues to exploit the discrete curvature information
resentation. The boundary of this initial mesh is obtained by sam- for the detection of feature lines in the geometry in order to split a

pling the surfaces to be joined. given mesh into geometrically coherent segments. Further, we can

We then refine the mesh and, again, apply the discrete fairing try to identify regions of a mesh where the value of the curvature
machinery. The smoothness of the connection to the predefinedis approximately constant — those regions correspond to special
parts of the geometry is guaranteed by letting the blend surface geometries like spheres, cylinders or planes. This will be the topic
mesh overlap with the given faces by one row of triangles (all nec- of a forthcoming paper.
essary information is obtained by sampling the given surfaces). The
vertices of the triangles belonging to the original geometry are not
allowed to move but since they participate in the global faimess References

functional they enforce a smooth connection. In fact this technique ) .
allows to define Hermite-type boundary conditions. [1] E. Catmull, J. ClarkRecursively generated B-spline surfaces
on arbitrary topological meshgSAD 10 (1978), pp. 350-355
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Figure 7: Visualizing the discrete curvature on a finite element mesh allows to detect artifacts without interpolating the data by a continuous
surface.

Figure 9: Creating a “monkey saddle” blend surface to join six planes. Any blend surface can be generated by closing the gap with a triangular
mesh first and then applying discrete fairing.
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Exploiting Subdivision in Modeling and
Animation

Speaker: David Forsey
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Pasting Spline Surfaces

Cristin Barghiel, Richard Bartels and David Forsey

Abstract. Details can be added to spline surfaces by applying displace-
ment maps. However, the computational intensity of displacement mapping
prevents its use for interactive design. In this paper we explore a form of
simulated displacement that can be used for interactive design by providing
a preview of true displacements at low computational cost.

gIntroduction

Displacement mapping is a standard and useful tool for realistic rendering
[3,8], and it has been suggested for application to surface approximation [6].
Because of its computational cost, however, it has not yet been fully explored
as a design tool. In [4] a restricted form of displacement mapping was in-
vestigated for use in interactive design. Composite surfaces were constructed
by layering a sequence of detail surfaces onto a base surface. FEach detail
was formulated as a vector displacement field and mapped onto a region of
the base. The process was restricted in that, in order to achieve continuity
between detail and base, it was necessary that the detail share a common
parametric domain with the base and possess a knot structure derivable from
the base by refinement, a setting studied recently by Weller and Hagen [9].
These restrictions permitted the computations for displacement mapping to
be simplified to such an extent that interactive design was feasible. Here we
extend the techniques of [4] to remove some of those restrictions.

True displacement mapping involves a vector-valued function d(r, s) that
is nonzero over a compact domain (r,s) € D, a 1-1 transformation T of that
domain into the domain (u,v) € S of a surface (point-valued) Sy(u, v), and the
resulting composition S;(u,v) = So(u,v) + d(T~!(u,v)). (Bold, lower case
letters denote vectors; bold upper case letters are transformations; Roman
and Greek lower case letters are scalars; Roman upper case letters are points,
and calligraphic letters are domains.) The continuity of S; is controlled by
the continuity of Sg, T and d. In the surface design setting that we wish to
consider, the intent of employing a displacement map is to achieve the “past-
ing” of a detail surface D(r, s) onto a base surface So(u,v). The function d is
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constructed from the difference between D and a reference surface. For con-
venience, the domain of D may be embedded into the range of D; that is, the
points on D are identified with points in the space {(r,s,?)}, and the domain
of D is identified with the plane (r, s,0) by some convenient homeomorphism.
This plane is often taken as the reference surface: d(r,s) = D(r,s) — (1, s,0).
The composition yielding S; must be implemented with respect to a coor-
dinate frame {(r,s,0),1,j,k} appropriate to d, D and some manifold coor-
dinate frame {So(u,v),l(u,v), m(u,v),n(u,v)} defined over Sy (with n(u,v)
taken as normal to S(u,v)). To achieve this, the mapping T should not only
map (u,v) smoothly into (r,s) but it should also provide a smooth mapping
from {(r,s,0),1,j,k} to {So(u,v),l(u,v), m(u,v),n(u,v)}. The elements of
this setting are shown in Figure 1, and except for the third dimension, this is
exactly the setting for texture mapping [7].

d=cai+ Gj+k S1 =Sp+al+ fm+yn
D= (rs,0)+d

Fig. 1. Displacement mapping.

§Simulated Displacement

Since the process just outlined must be carried out at every surface point to be
considered, a large amount of computation is involved. In high-quality image
rendering, texture and displacement mappings are supportable because they
are comparable to other computationally intensive aspects of the rendering
process (e.g. ray tracing) and because we do not expect to produce high-
quality images in real time. For interactive design, however, costs must be cut.
We shall do this by limiting the mapping process to a selected, small number
of sites, and choose the sites and the geometric entities to be mapped in a
way that provides us with a reasonable preview of what a true displacement
mapping will finally produce. The simulation must support such a preview in
a dynamic as well as a static sense. That is; if the detail surface D is modified
in its interior, that modification should be possible either before or after the
pasting, and if the base surface S is modified after pasting, the pasted detail



Pasting Spline Surfaces 3

should conform to the change. Figure 2 illustrates this in a schematic way,
where the detail is in grey, the base is in black, and the control points of the
detail are shown as circles.

Fig. 2. Schema for displacement simulation.

Figure 2 also reveals further elements of the approach. The simulation
will involve only mappings of the control points of the detail surface. We lock
each control point of D to some individual origin site chosen on the base spline
So, and the displacements d of these control points are measured with respect
to coordinate vectors that are sensitive to the orientation of the base spline at
the locality of each origin site. This is simpler to describe in terms of curves;
having an extra variable adds nothing of substance to the ideas.

The detail spline is D(r) = >, Dece(r), 7 € D for some basis splines c;.
The displacement to be formed from D(r) is d(r) = >, [De — (r¢,0)] ce(7)
where Dy — (r4,0) can be represented as (r,0) + ayip + [¢je in terms of
coordinate frames {(r¢,0),1iz,j¢} (the orthonormal coordinate vectors ig,j, are
usually all chosen the same, for convenience). The base spline is So(u) =
>k Skbi(u), u € S, and for all u ¢ T(D) the composite spline S;(u) is taken
to be identical to Sp(u). For T(D) C S the composite spline S (u) is taken to
be

Si(u) =Y [So(Tre) + aym(Tre) + Sen(Tre)] co(T ™ u)
¢

where m(u) and n(u) are unit tangent and normal, respectively, to Sg(u).
Figure 3 provides an overview. (To avoid computing with T~! one may regard
this portion of S; to be a separate, free-standing spline in the variable r» and
display it juxtaposed to Sg to provide an impression of S; in its entirety. On
workstations that support trimming, Sy can be trimmed against this free-
standing spline for a better visual impression. Finally, note that if the sense
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of the normal n is changed, the result will be to map the displacement onto
the opposite side of the curve. Thus, one may choose to map a displacement
positively or negatively.)

Fig. 3. Mapping displacement to base.

If modifications are made to D, these modifications are recorded through
additional displacements for the control points of D

d(r) = d(r) =Y _[(re,0) + (o + o0)ie + (Be + m2)je] eo(r)
V4

and these modifications may be applied to S; without the need to recompute
the mapping

S1(u) =Y [So(Tre) + (e + oe)m(Tre) + (B¢ + 7)n(Try)] co(T~ )
J4

If any change is made retroactively to the base, Sg — Sp, then the altered
version of S; becomes

S1(u) — S1(u) =Y [So(Tre) + agm(Try) + BA(Try)] co(T )
¢

where, again, the mapping need not be recomputed. The only interactive
design step that requires a recomputation of the mapping T is the step that
revises the pasting of a detail onto a new base position.

The sites (1¢, 0) chosen for this simulated displacement mapping are based
on the nodal points (also called Greville points) for the basis ¢/(r); that is,
the nodal point r, corresponding to ¢y is the value of r found by averaging all
but the leftmost and rightmost knots on the support of ¢;. Several arguments
make this a sensible choice. Under any reasonable refinement of D by knot
insertion, each control point Dy exhibits a higher order of convergence to the
point D(ry) than it does to any neighboring point D(r) [2], which provides this
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simulated version of displacement mapping a good limiting correspondence
with true displacement mapping under refinement. Further, under the view
that the simulated displacement mapping is designed to lay the domain D
over the spline Sy and thereby transmit the shape of Sy in some meaningful
way to the detail D, this association of nodal points with control points is
known to be effective in providing such a geometric transmission of shape [5].
Finally, to take the most naive view, if D and Sy both simply constituted flat
planes, as suggested by the first part of Figure 2, and the mapping constituted
the identity, Tr = r = u then Sp(u) = S1, and the most convenient values to
take for ay and By would be zero. In this setting our mapping would simplify
to,

So(u) = Si(u) = (u,0) = Y [So(ue)] ce(u) = Y (ur, 0)ee(u)

£ 4

In order for this to be true, we must have u = ), ugce(u) which is another
property satisfied by the nodal points [2].

The above discussion extends to surfaces if (r) is replaced by (r,s), (u)
is replaced by (u,v), the tangential curve coordinate vector m(u) is replaced
by a suitable pair of tangential surface coordinate vectors 1(u,v), m(u,v), a
bivariate spline basis is used, and some equivalent of the nodal points can be
found. For tensor product surfaces the extension is immediate and obvious.

t§Hierarchical Application and Overlapping Domains

The use of displacement maps need not be restricted to a single detail D = Dy.
The surface S; can serve as the base for a further detail D1, and the process
can continue through a sequence of displacements

(S0, Do) — S1, (S1,D1) — Sz, (S2,D2) — S3, ...

In this context it is more meaningful to speak of a base composition, consisting
of an original base and zero or more details pasted upon it, and a detail
composition consisting of another original base and zero or more details. The
only thing distinguishing a base composition from a detail composition is the
pasting order: the composite detail will be applied as a displacement upon
the composite base.

Figure 5, for example, shows the domains of a base composition B =
{Bi1, B2, B3, By, Bs} and a detail composition D = {D;,D3}. The components
of each set are listed in pasted order. Domain 3, is the root of the composition,
since it is not pasted onto any domain and is sufficiently large to accommodate
all its pasted details. (Every surface composition is required to have a root
domain — we have not investigated the possibility of having portions of a detail
“hanging free” from any base.)

The domain dependencies are shown in Figure 6, where the nodes of the
graph represent domains, and edges indicate portions of domains that overlap.
Although both B and D, are subdomains of Dy, they lie on opposite sides:
Bs, a base component, lies under Dy, while detail surface D5 is pasted on D;.
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B3 Bs

By /\/

Fig. 5. Overlapping domains: the polygonal view.

By

Fig. 6. Overlapping domains: the structural view.

This overlapping structure may change during interactive design as a
detail composition is added to a base composition, moved about upon the base
composition, or taken away from the base composition. When the structure
of a composition changes, two steps precede the surface mapping operation:
(1) recomputation of domain intersections, which requires a fast polygon-
polygon clipping algorithm, and (2) reassociation of each Greville point on
the detail domain composition with its underlying base-domain intersections,
which requires a sequence of point-in-polygon operations, each one of which is
followed by the construction of a surface-coordinate frame {S,1, m,n} and the
mapping of control vertices. This second step constitutes revising the mapping
T between base composition and detail composition and represents the major
expense for interactive updating. (If the domain dependency structure does
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W Do \\

N Do \92
2 D,
D4 D1 D1

Fig. 7. Domain shuffling in a DAG.

not change but the shape of any component of surface — base or detail — is
modified through the change of one or more control points, the two steps
just mentioned are not necessary, but the control points for any detail surface
affected must be re-mapped in pasted order, which requires evaluation of the
affected surfaces at the nodal points, reconstruction of coordinate frames, and
the transcription of control-point components into the new frames.)

o

4 D 4

Fig. 8. Detail changes as base is modified.

The domain dependencies form a directed graph with interconnected
nodes (Figure 6). Once some surface slides completely from under its detail
surfaces, it ceases to influence the shape of these detail surfaces. If subse-
quently shifted back across any ex-detail surface domain, it is pasted on top
of this ex-detail surface (Figure 7). This mechanism acts to prevent loop
formation in the graph and provides an intuitive rule for structural motion.
Thus, the layout of pasted domains may be maintained as a directed acyclic
graph (DAG). The technical details of maintaining this DAG, together with
some shortcuts involving the use and updating of a spanning tree for the DAG
are covered in [1].

A surface editor, PasteMaker, has been written in C++ at the Computer
Graphics Laboratory in the University of Waterloo to illustrate the feasibility
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Fig. 10. Pasting some features on a head.

of interactive design using displacements. Editing may proceed at any level
of a composition. The surfaces existing later in pasted order, thus serving
as a detail composition, react in a natural way to the modification of their
base composition (Figure 8). As we have mentioned previously, pasting may
be positive or negative; that is, a detail may be attached so as to provide a
bump or a depression by adjusting the sense of the surface normal (Figure 9).
Figure 10 provides an illustration of three stages in the design of a cartoon
character for animation. The head surface was imported from another spline
editor, while the beard, nose, and horns were designed within PasteMaker.
Finally, Figure 11 shows a comparison of simulated displacement and true
displacement. The upper left image in the figure shows a base and detail
surface before pasting. The upper right image shows the result of pasting the
detail at an angle across the base. The detail’s 10 patches in the lengthwise
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Fig. 11. Simulated vs. true displacement mapping.

direction are not quite able to “follow” the bulge in the base surface, resulting
in an intrusion of the base into the detail. The lower left image shows the
detail surface after refinement (naively, by midpoint insertion in the param-
eter corresponding to the lengthwise direction). The final image shows the
situation after one more naive refinement. This image is indistinguishable
from that produced by actual displacement mapping.

Acknowledgements. Funding was contributed by NSERC, ITRC, and GM.
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Multiresolution Animation
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 How to use it.
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Retrospective '

* “Hierarchical B-Spline Refinement”, SIGGRAPH’88
Forsey/Bartels.

Motivations for H-Splines '

*H-Splines were devel oped specifically for animation.

*Address problems with traditional B-splines

— non-local knot insertion

— the “degree-of-freedom” problem.
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L ocal Refinement

* Models rapidly become “heavy”
— patchesin locations they are not needed
— extra rendering overhead
— may affect previously defined animation
— even more points to animate

» Local refinement adds patches to a restricted area

L ocal Refinement
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L ocal Refinement

» Created using a multiresolution representation

» Can dramatically reduce the storage requirements

Multiresolution Editing

» Each resolution procedurally related to the next coarsest leve
— arbitrary procedure (offset operator) for each control point.

— creates a “reactive surface”
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H-Splines r

Applicable to any surface formulation with:

» Local support

» Subdivision that does not alter the shape of the limit surface
— polygons
— other splines (including curves & deformation lattices)
— various subdivision surface formulations
— wavel ets (depending upon basis used)

H-Splines r

Advantages

* Top-down modelling (more like sculpting)
— details maintained during broad-scale editing
— faster/easier to animate complex surfaces
 Efficient representation (compression)

» Refinement only where needed
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M ultiresolution Animation

Availablein a limited form commercially:

 MetaNURBSs (Lightwave)
* Meshsmooth (3DMax)
» Symbolics L-surf (now Nicheman)

* various polygon smoothing packages

Animating with H-Splines
Offset Operators:

» tangent plane offset

» “frame” offset (attaches a control vertex to a skeletal segment
 others described later

—e
e | p
'4 | i 7 e

i/

| 72,7

e

177

£
—+ Low-res mesh o High-res CV after subdivision
—— High-res mesh # CV after offset operator applied
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L ow-Res Attachment
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Example Animation
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L ocking Down Geometry, Part ||

Full Detail Lowest Resolution

L ocking Down Geometry, Part ||
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Full Resolution Bent Full Resolution Straight

Example Animation
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M ultiresolution Animation

Advantages

+ allows top-down approach to surface animation
» easy to mix broad-scale and fine scale effects
 faster to animate

— low-res model always available (for interactive speed)

— lessworry about high-res model behaviour

L ayered Animation

Low-res modification High-res effect
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L ayered Animation

Medium-res modification High-res effect

L ayered Animation

Both modifications Both modifications, jaw open
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Example Animation '

headZ moy

L evel of Detall r

e Because the animation
occurs at multiple levels of
detail, low-res models still
animate when used as low
resolution geometry
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L ayered Animation
» Animation at each resolution layers deformations rather than
blending them.

* Makes it easy to combine vertex animation with shape
interpolation.

» Can combine relative (offset animation) with absolute (skeleta
attachments) effects easily.

—_—

» Provides LOD for animation as well as geometry

Editing Operations

* Any spline-based tools can be used with H-Splines
» Additional operations possible:
— copy level, region (rubber stamp details)
— non-hierarchical editing
— modify offset:
» move cv normal/tangent/along parent surface
» move cv along offset
» rotate offset
» move offset origin
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Secondary Motion using Offsets

» Typical spring/mass simulations produce “jello” effects

» Can provide more structure by treating each offsets as a rod/
system.

— prevents motion into surface
— surface details preserved
— fast, easy to calculate

u

Secondary Motion |,
using Offsets
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e
Secondary Motion using Offsets r

Sample animation

e
Secondary Motion using Offsets r

Wrinkles
» Uses a “behaviour map” indicating location of wrinkle and
dynamic properties (if combined with rod/mass simulation).

— value from map used to determine how to alter the offset
parameterized by change in distance to neighbour

— low-res modifications to surface increase/decrease size of
wrinkle
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Secondary Motion using Offsets
Wrinkles

Pt
| I |

|
[ ) I ) | ! 1

Secondary Motion using Offsets
Wrinkles
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Surface Approximation

Problem

» Animators need to control placement of isoparms

» Draw lines directly onto sculptures for digitization as a spline
control mesh

* Non-locality of knots creates heavier mesh, crowded lines

H-Spline Approach

» Allows mesh to be drawn with areas of higher detail

Variations Link to paper

Surface Pasting

» Diagonal features are difficult to model

» Such features are modeled separately and “pasted” onto the
res surface

» Generalizes H-Splines, but are more computationally expens

(Note: commercially available in the Houdini animation system)

(0

V]

Page 19



Surface Pasting '

Surface Pasting '

Overlapping features Underlying parameter space
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Grafting Surfaces

» Arbitrary topology surfaces difficult with tensor-product splines

use Catmull-Clark subdivision surfaces to join spline surfaces

maintain compatibility with B-splines

minimizes the number of extraordinary points

maintains a simple U/V mapping for textures and attribute maps

Grafting

Two grafted cylinders Finger grafts
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O
Grafting

~ g
Low-res hand with grafts Rendered hand
& ) @
Multiresolution Simulation

Problem

» simulations based on simple finite elements (spring/mass me
are difficult to control
— unclear how to set the parameters for a particular behaviour

— stiff systems suffer from numerical instability or small step
Sizes

— very few formulations that deal with micro/macro effectsin the
same model

nes)

U)
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Multiresolution Simulation — finkoses

Animator’s Solution:

» use a multiresolution representation of surface
* propagate a proportion of forces to each successive resolutio

— similar to multigrid methods, but different equation solved at
each resolution

— can retain surface details using an offset representation

o w Wy 4

100 % of forces applied at lowest resolution

%%%%

100 % of forces applied at highest resolution

N X

Forces applied at multiple resolutions
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er

link to

M ultir esolution Defor mations

but uses kinematics rather than dynainjcs

Uses similar approach

Deformed surface

Displacement vectors

Prolongate solution
&
Absorb remaining

f

Ad displacments

N\

Restrict
displacemen

Y

Weight
displaceme

W

10NS

M ultir esolution Defor mat

» Different behaviours are created by varying the amount each

resolution accomodates the deformation
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M ultir esolution defor mations

Time varying
effects are added
by delaying the
changeto the
position and

orientation of the
offsets

Behaviour during withdrawal of sphere

Summary

Multiresolution Modeling and Animation

» provides a number of additional tools based on offset operatqg
 fast, easy to use on complex models
» provides good control over complex models

» compatible with tools or simulations that operate on spline
surfaces

e computations simple enough for real-time

=

U7
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Chapter 10

Subdivision Surfaces in the Making of
Geri's Game

Speaker: Tony DeRose
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Subdivision Surfaces in Character Animation

Tony DeRose Michael Kass Tien Truong

Pixar Animation Studios

Figure 1: Geri.

Abstract 1 Motivation

The creation of believable and endearing characters in computerThe most common way to model complex smooth surfaces such
graphics presents a number of technical challenges, including theas those encountered in human character animation is by using a
modeling, animation and rendering of complex shapes such aspatchwork of trimmed NURBS. Trimmed NURBS are used pri-
heads, hands, and clothing. Traditionally, these shapes have beemarily because they are readily available in existing commercial
modeled with NURBS surfaces despite the severe topological re- systems such as Alias-Wavefront and Softimage. They do, how-
strictions that NURBS impose. In order to move beyond these re- ever, suffer from at least two difficulties:
strictions, we have recently introduced subdivision surfaces into our
production environment. Subdivision surfaces are not new, buttheir 1. Trimming is expensive and prone to numerical error.
use in high-end CG production has been limited.

Here we describe a series of developments that were required 2 |t js difficult to maintain smoothness, or even approximate

in order for subdivision surfaces to meet the demands of high-end smoothness, at the seams of the patchwork as the model is
production. First, we devised a practical technique for construct- animated. As a case in point, considerable manual effort was
ing prOVany Smooth Variable-l’adius fI||etS and b|endS. Second, we required to hide the seams in the face of Woody, a principa|
developed methods for using subdivision surfaces in clothing sim- character irfoy Story

ulation including a new algorithm for efficient collision detection.

Third, we developed a method for constructing smooth scalar fields sypdivision surfaces have the potential to overcome both of these

on subdivision surfaces, thereby enabling the use of a wider classyrgplems: they do not require trimming, and smoothness of the

of programmable shaders. These developments, which were usegnodel is automatically guaranteed, even as the model animates.

extensively in our recently completed short f@erl’s game have The use of subdivision in animation systems is not new, but for a

become a highly valued feature of our production environment. ariety of reasons (several of which we address in this paper), their
use has not been widespread. In the mid 1980s for instance, Sym-
bolics was possibly the first to use subdivision in their animation
system as a means of creating detailed polyhedra. The LightWave
3D modeling and animation system from NewTek also uses subdi-
vision in a similar fashion.



(b)

Figure 2: The control mesh for Geri’'s head, created by digitizing a
full-scale model sculpted out of clay.

© (d)

This paper describes a number of issues that arose when werjgyre 3: Recursive subdivision of a topologically complicated

added a variant of Catmull-Clark [2] subdivision surfaces to our mpagh: (a) the control mesh; (b) after one subdivision step; (c) after
animation and rendering systems, Marionette and RenderMan [17], yv0 subdivision steps; (d) the limit surface.

respectively. The resulting extensions were used heavily in the cre-
ation of Geri (Figure 1), a human character in our recently com-
pleted short filmGeri's game Specifically, subdivision surfaces
were used to model the skin of Geri’'s head (see Figure 2), his hands
and his clothing, including his jacket, pants, shirt, tie, and shoes.

tures [12, 13] and projection textures [9] can address some pro-
"duction needs, but Section 5.1 shows that it is possible to go a good

In contrast to previous systems, such as those mentioned abovedeal further by using programmable shaders in combination with

that use subdivision as a means to embellish polygonal models, ourSMPOth scalar fields defined over the surface. ,

system uses subdivision as a means to define piecewise smooth sur- 1 N combination of semi-sharp creases for modeling, an appro-
faces. Since our system reasons about the limit surface itself, polyg-Priate and efficient interface to physical simulation for animation,
onal artifacts are never present, no matter how the surface animate@nd the availability of scalar fields for shading and rendering have
or how closely it is viewed. mad_e subd!V|5|on surfaces an extremely effective tool in our pro-

The use of subdivision surfaces posed new challenges through-duction environment.
out the production process, from modeling and animation to ren-
dering. In modeling, subdivision surfaces free the designer from
worrying about the topological restrictions that haunt NURBS mod- 2 ~Background
elers, but they simultaneously prevent the use of special tools that
have been developed over the years to add features such as variablé single NURBS surface, like any other parametric surface, is lim-
radius fillets to NURBS models. In Section 3, we describe an ap- ited to representing surfaces which are topologically equivalent to
proach for introducing similar capabilities into subdivision surface a sheet, a cylinder or a torus. This is a fundamental limitation for
models. The basic idea is to generalize the infinitely sharp creasesany surface that imposes a global planar parameterization. A single
of Hoppeet. al.[10] to obtain semi-sharp creases — that is, creases subdivision surface, by contrast, can represent surfaces of arbitrary
whose sharpness can vary from zero (meaning smooth) to infinite. topology. The basic idea is to construct a surface from an arbitrary

Once models have been constructed with subdivision surfaces,polyhedron by repeatedly subdividing each of the faces, as illus-
the problems of animation are generally easier than with corre- trated in Figure 3. If the subdivision is done appropriately, the limit
sponding NURBS surfaces. As alluded to earlier, the reason is thatof this subdivision process will be a smooth surface.
subdivision surface models are seamless, meaning that the surface Catmull and Clark [2] introduced one of the first subdivision
is guaranteed to remain smooth as the model is animated. schemes. Their method begins with an arbitrary polyhedron called

Using subdivision surfaces for physically-based animation of the control mesh. The control mesh, denalél (see Figure 3(a)),
clothing, however, poses its own difficulties which we address in is subdivided to produce the medii* (shown in Figure 3(b)) by
Section 4. First, it is necessary to express the energy function of thesplitting each face into a collection of quadrilateral subfaces. A face
clothing on subdivision meshes in such a way that the resulting mo- havingr edges is splitinta quadrilaterals. The vertices 8f* are
tion does not inappropriately reveal the structure of the subdivision computed using certain weighted averages as detailed below. The
control mesh. Second, in order for a physical simulator to make use same subdivision procedure is used againiéh to produce the
of subdivision surfaces it must compute collisions very efficiently. meshAZ? shown in Figure 3(c). The subdivision surface is defined
While collisions of NURBS surfaces have been studied in great de- to be the limit of the sequence of meshe&, M*, ... created by
tail, little work has been done previously with subdivision surfaces. repeated application of the subdivision procedure.

Having modeled and animated subdivision surfaces, some To describe the weighted averages used by Catmull and Clark it
formidable challenges remain before they can be rendered. Theis convenient to observe that each verte;Mﬁ’Tf*1 can be associated
topological freedom that makes subdivision surfaces so attractive with either a face, an edge, or a vertexidf ; these are called face,
for modeling and animation means that they generally do not edge, and vertex points, respectively. This association is indicated
admit parametrizations suitable for texture mapping. Solid tex- in Figure 4 for the situation around a vertekof M°. As indicated



in the figure, we usg’s to denote face pointg’s to denote edge
points, andv’s to denote vertex points. Face points are positioned
at the centroid of the vertices of the corresponding face. An edge
point e;.“, as indicated in Figure 4 is computed as

i Vel fE
6]- = 4 ) (1)
where subscripts are taken modulo the valence of the central vertex
v, (The valence of a vertex is the number of edges incident to it.)
Finally, a vertex poinb* is computed as

i+1_n_2i 1 i 1 i+1
v ——n U'f‘ﬁZ%"f‘ﬁij (2
J

J

Vertices of valence are called ordinary; others are called extraor- Figure 5: Geri's hand as a piecewise smooth Catmull-Clark surface.
dinary. Infinitely sharp creases are used between the skin and the finger
nails.

Figure 4: The situation around a verteX of valencen.

These averaging rules — also called subdivision rules, masks, or
stencils — are such that the limit surface can be shown to be tangent _. )
plane smooth no matter where the control vertices are placed [14, 19ure 6: A surface where boundary edges are tagged as sharp and
19]1 boundgry vertices of valgnpe two are tagged as corners. The control

Whereas Catmull-Clark subdivision is based on quadrilaterals, Mesh is yellow and the limit surface is cyan.

Loop’s surfaces [11] and the Butterfly scheme [6] are based on tri-

angles. We chose to base our work on Catmull-Clark surfaces for

two reasons: they are incident to two sharp edges. We do this to mimic the behav-
ior of endpoint interpolating tensor product uniform cubic B-spline

1. They strictly generalize uniform tensor product cubic B- surfaces, as illustrated in Figure 6.

splines, making them easier to use in conjunction with exist-
ing in-house and commercial software systems such as Alias-

Wavefront and Softimage. 3 Modeling fillets and blends

2. Quadrilaterals are often better than triangles at capturing the
symmetries of natural and man-made objects. Tube-like sur-
faces — such as arms, legs, and fingers — for example, can
be modeled much more naturally with quadrilaterals.

As mentioned in Section 1 and shown in Figure 5, infinitely sharp
creases are very convenient for representing piecewise-smooth sur-
faces. However, real-world surfaces are never infinitely sharp. The
corner of a tabletop, for instance, is smooth when viewed suffi-
Following Hoppeet. al.[10] it is possible to modify the subdivi- ciently clos_ely. For animation purposes it is often desirable to cap-
sion rules to create piecewise smooth surfaces containing infinitely '€ such tightly curved shapes. o
sharp features such as creases and comers. This is illustrated by, To this end we have developed a generalization of the Catmull-
Geri's hand, shown in Figure 5. Infinitely sharp creases were used clark scheme to admit semi-sharp creases — that is, creases of con-
to separate the skin of the hand from the finger nails. Sharp creasedrollable sharpness, a simple example of which is shown in Figure 7.
can be modeled by marking a subset of the edges of the control ©One approach to achieve semi-sharp creases is to develop subdi-
mesh as being sharp, then using specially designed rules in theViSion rules whose weights are parametrized by the sharpnefss

neighborhood of sharp edges. Appendix A describes the necessanfn€ crease. This approach is difficult because it can be quite hard
special rules and when to use them. to discover rules that lead to the desired smoothness properties of

Again following Hoppeet. al, we deal with boundaries of the  the limit surfaces. One of the roadblocks is that subdivision rules

control mesh by tagging the boundary edges as sharp. We have als@round a crease break a symmetry possessed by the smooth rules:
found it convenient to tag boundary vertices of valence 2 as corners, typical smooth rules (such as the Catmull-Clark rules) are invariant

even though they would normally be treated as crease vertices sincé!Nder cyclic reindexing, meaning that discrete Fourier transforms
can be used to prove properties for vertices of arbitrary valence (cf.

1Technical caveat for the purist: The surface is guaranteed to be smoothZorin [19]). In the absence of this invariance, each valence must
except for control vertex positions in a set of measure zero. currently be considered separately, as was done by Schweitzer [15].




using the sharp edge rule. The two subedges created each have
sharpness — 1. A sharpness = 0 edge is considered smooth,
and it stays smooth for remaining subdivisions. In the limit where

s — oo the sharp rules are used for all steps, leading to an infinitely
sharp crease. An example of integer sharpness creases is shown
in Figure 7. A more complicated example where two creases of
different sharpnesses intersect is shown in Figure 8.

(a) (b)

(d)

Figure 8: A pair of crossing semi-sharp creases. The control mesh
for all surfaces is the octahedron drawn in wire frame. Yellow de-

(e) notes smooth edges, red denotes the edges of the first crease, and

magenta denotes the edges of the second crease. In (a) the crease

Figure 7: An example of a semi-sharp crease. The control mesh forsharpnesses are both zero; in (b), (c), and (d) the sharpness of the
each of these surfaces is the unit cube, drawn in wireframe, wherered crease is 4. The sharpness of the magenta crease in (b), (c), and
crease edges are red and smooth edges are yellow. In (a) the creag@) is 0, 2, and 4, respectively.
sharpness is 0, meaning that all edges are smooth. The sharpnesses

for (b), (c), (d), and (e) are 1, 2, 3, and infinite, respectively. Case 2:A constant, but not necessarily integer sharpaeshe
main idea here is to interpolate between adjacent integer sharp-
nesses. Let| andst denote the floor and ceiling af respectively.

Another difficulty is that such an approach is likely to lead to a Imagine creating two versions of the crease: the first obtained by
zoo of rules depending on the number and configuration of creasessubdividing s times using the sharp rules, then subdividing one
through a vertex. For instance, a vertex with two semi-sharp creasesadditional time using the smooth rules. Call the vertices of this first
passing through it would use a different set of rules than a vertex versionwvlo, vl1,.... The second version, the vertices of which we
with just one crease through it. denote byvto, v, ..., is created by subdividingt times using the

Our approach is to use a very simple process we call hybrid sub- sharp rules. We take the-times subdivided semi-sharp crease to
division. The general idea is to use one set of rules for a finite but have vertex positions;” computed via simple linear interpolation:
arbitrary number of subdivision steps, followed by another set of
rules that are applied to the limit. Smoothness therefore depends ot = (1 — o)vli +ouvti 3)
only on the second set of rules. Hybrid subdivision can be used to
obtain semi-sharp creases by using infinitely sharp rules during thewheres = (s — s})/(st —sl). Subsequent subdivisions are done
first few subdivision steps, followed by use of the smooth rules for using the smooth rules. In the case where all creases have the same
subsequent subdivision steps. Intuitively this leads to surfaces thatnon-integer sharpnessthe surface produced by the above process
are sharp at coarse scales, but smooth at finer scales. is identical to the one obtained by linearly interpolating between

Now the details. To set the stage for the general situation where the integer sharpness limit surfaces corresponding|tand s t.
the sharpness can vary along a crease, we consider two illustrativeTypically, however, crease sharpnesses will not all be equal, mean-
special cases. ing that the limit surface is not a simple blend of integer sharpness

Case 1: A constant integer sharpnesscrease: We subdivide  surfaces.
s times using the infinitely sharp rules, then switch to the smooth ~ The more general situation where crease sharpness is non-integer
rules. In other words, an edge of sharpness 0 is subdivided and varies along a crease is presented in Appendix B. Figure 9 de-




Figure 9: A simple example of a variable sharpness crease. TheFigure 10: A more complex example of variable sharpness creases.

edges of the bottom face of the cubical control mesh are infinitely This model, inspired by an Edouard Lanteri sculpture, contains nu-

sharp. Three edges of the top face form a single variable sharpnessnerous variable sharpness creases to reduce the size of the control

crease with edge sharpnesses set to 2 (the two magenta edges), amdesh. The control mesh for the model made without variable sharp-

4 (the red edge). ness creases required 840 faces; with variable sharpness creases the
face count dropped to 627. Model courtesy of Jason Bickerstaff.

picts a simple example. A more complex use of variable sharpness

is shown in Figure 10. analytically [8]. In general, however, finite-element surface in-
tegrals must be estimated through numerical quadrature, and this

. . gives rise to a collection of special cases around extraordinary

4 Supportlng cloth dynamlcs points. We chose to avoid these special cases by adopting a finite-
difference approach, approximating the clothing with a mass-spring

The use of simulated physics to animate clothing has been widely model [18] in which all the mass is concentrated at the control

discussed in the literature (cf. [1, 5, 16]). Here, we address the points.

issues that arise when interfacing a physical simulator to a set of Away from extraordinary points, Catmull-Clark meshes under

geometric models constructed out of subdivision surfaces. It is not subdivision become regular quadrilateral grids. This makes them

our intent in this section to fully detail our cloth simulation system ideally suited for representing woven fabrics which are also gen-

—that would require an entire paper of its own. Our goal is rather to erally described locally by a gridded structure. In constructing the

highlight issues related to the use of subdivision surfaces to model energy functions for clothing simulation, we use the edges of the

both kinematic and dynamic objects. subdivision mesh to correspond with the warp and weft directions

In Section 4.1 we define the behavior of the cloth material by of the simulated woven fabrics.

constructing an energy functional on the subdivision control mesh.  Since most popular fabrics stretch very little along the warp

If the material properties such as the stiffness of the cloth vary over or weft directions, we introduce relatively strong fixed rest-length

the surface, one or more scalar fields (see Section 5.1) must be desprings along each edge of the mesh. More precisely, for each edge

fined to modulate the local energy contributions. In Section 4.2 we from p; to p», we add an energy teri, E, (p1, p2) where

describe an algorithm for rapidly identifying potential collisions in-

volving the cloth and/or kinematic obstacles. Rapid collision detec- 1 ( |p1 —po| ?

- - iy E = (Pl 4
tion is crucial to achieving acceptable performance. s(p1,p2) = 2 \lpr — p3 (4)
4.1 Energy functional Here,p7 andp; are the rest positions of the two vertices, &nds

the corresponding spring constant.
For physical simulation, the basic properties of a material are gen- ~ With only fixed-length springs along the mesh edges, the simu-
erally specified by defining an energy functional to represent the lated clothing can undergo arbitrary skew without penalty. One way
attraction or resistance of the material to various possible deforma-to prevent the skew is to introduce fixed-length springs along the
tions. Typically, the energy is either specified as a surface integral diagonals. The problem with this approach is that strong diagonal
or as a discrete sum of terms which are functions of the positions of springs make the mesh too stiff, and weak diagonal springs allow
surface samples or control vertices. The first type of specification the mesh to skew excessively. We chose to address this problem
typically gives rise to a finite-element approach, while the second by introducing an energy term which is proportional to the product
is associated more with finite-difference methods. of the energies of two diagonal fixed-length springspilfandp-
Finite-element approaches are possible with subdivision sur- are vertices along one diagonal of a quadrilateral mesh facgzand

faces, and in fact some relevant surface integrals can be computedandp, are vertices along the other diagonal, the energy is given by



kaE4(p1,p2, 03, pa) Wherek, is a scalar parameter that functions  of the root node with a box of siz2e centered orp. If there is

analagously to a spring constant, and where no intersection, then there are no patches withrfi p. If there is
an intersection, then we repeat the test on each of the children and
Ei(p1,p2,p3,p4) = Es(p1,p2)Es(ps, pa). (5) recurse. The recursion terminates at the leaf nodes of the quadtree,

where bounding boxes of individual subpatches are tested against
The energyE,(p1, p2, ps, p4) reaches its minimum at zero when  the box aroungb.
either of the diagonals of the quadrilateral face are of the original  Subdivision meshes have a natural hierarchy for levels finer than
rest length. Thus the material can fold freely along either diago- the original unsubdivided mesh, but this hierarchy is insufficient

nal, while resisting skew to a degree determined:bpyWe some- because even the unsubdivided mesh may have too many faces to
times use weak springs along the diagonals to keep the materialtest exhaustively. Since there is there is no gldbat) plane from
from wrinkling too much. which to derive a hierarchy, we instead construct a hierarchy by

With the fixed-length springs along the edges and the diagonal “unsubdividing” or “coarsening” the mesh: We begin by forming
contributions to the energy, the simulated material, unlike real cloth, leaf nodes of the hierarchy, each of which corresponds to a face
can bend without penalty. To add greater realism to the simulated of the subdivision surface control mesh. We then hierarchically
cloth, we introduce an energy term that establishes a resistance tamerge faces level by level until we finish with a single merged face
bending along virtual threads. Virtual threads are defined as a se-corresponding to the entire subdivision surface.
quence of vertices. They follow grid lines in regular regions of the ~ The process of merging faces proceeds as follows. In order to
mesh. When a thread passes through an extraordinary vertex of vacreate the'th level in the hierarchy, we first mark all non-boundary
lencen, it continues by exiting along the edge/2]|-edges away edges in the — 1st level as candidates for merging. Then until all
in the clockwise direction. Ip;, p2, andps are three points along  candidates at théth level have been exhausted, we pick a candi-
a virtual thread, the anti-bending component of the energy is given date edge, and remove it from the mesh, thereby merging the two
by k, Ep(p1, p2, p3) where facesf; and f» that sharea into a “superface”f*. The hierarchy

is extended by creating a new node to repregéntthe children
1 lps —pa|  |p2 — p1 of which are set to be the nodes correspondingit@and f>. If
Ep(p1,p2,p3) = 5 * i —pil i —p] (6) f* were to immediately participate in another merge the hierarchy
Ps — P2 P2 — P could quickly become poorly balanced. To ensure that the hierarchy
is well balanced, we next remove all edgeg tffrom the candidate
list. When all the candidate edges at one level have been exhausted,
we begin the next level by marking non-boundary edges as candi-
dates. Hierarchy construction halts when only a single superface
remains in the mesh.

The coarsening hierarchy is constructed once in a preprocessing
phase. During each iteration of the simulation, control vertex posi-
tions change so the bounding boxes stored in the hierarchy must be
updated. Updating the boxes is again a bottom up process: the cur-
rent control vertex positions are used to update the bounding boxes
at the leaves of the hierarchy. We do this efficiently by storing with
4.2 Collisions each leaf in the hierarchy a set of pointers to the vertices used to

) ) o ) ) ) construct its bounding box. Bounding boxes are then unioned up
The simplest approach to detecting collisions in a physical simula- the hierarchy. A point can be “tested against” a hierarchy to find
tion is to test each geometric element (i.e. point, edge, face) againsta|| faces withine of the point by starting at the root of the hierar-
each other geometric element for a possible collision. Witheo- chy and recursively testing bounding boxes, just as is done with the
metric elements, this would tak§¥? time, which is prohibitive for NURBS quaditree.
large V. To achieve practical running times for large simulations,  We build a coarsening hierarchy for each of the cloth meshes, as
the number of possible collisions must be culled as rapidly as possi-well as for each of the kinematic obstacles. To determine collisions
ble using some type of spatial data structure. While this can be donepetween a cloth mesh and a kinematic obstacle, we test each vertex
in a variety of different ways, there are two basic strategies: we of the cloth mesh against the hierarchy for the obstacle. To deter-
can distribute the elements into a two-dimensional surface-basedmine collisions between a cloth mesh and itself, we test each vertex
data structure, or we can distribute them into a three-dimensional of the mesh against the hierarchy for the same mesh.
volume-based data structure. Using a two-dimensional structure
has several advantages if the surface connectivity does not change. . L
First, the hierarchy can be fixed, and need not be regenerated eactb Rendering subdivision surfaces
time the geometry is moved. Second, the storage can all be stati-
cally allocated. Third, there is never any need to rebalance the tree.In this section, we introduce the idea of smoothly varying scalar
Finally, very short edges in the surface need not give rise to deepfields defined over subdivision surfaces and show how they can be
branches in the tree, as they would using a volume-based method. used to apply parametric textures to subdivision surfaces. We then

It is a simple matter to construct a suitable surface-based datadescribe a collection of implementation issues that arose when sub-
structure for a NURBS surface. One method is to recursively sub- division surfaces and scalar fields were added to RenderMan.
divide the(s, t) parameter plane into an quadtree. Since each node
in the _quadtree represents a subs_quare of the parameter plane, g 1 Texturing using scalar fields
bounding box for the surface restricted to the subsquare can con-
structed. An efficient method for constructing the hierarchy of NURBS surfaces are textured using four principal methods: para-
boxes is to compute bounding boxes for the children using the con- metric texture mapping, procedural texture, 3D paint [9], and solid
vex hull property; parent bounding boxes can then be computed in atexture [12, 13]. It is straightforward to apply 3D paint and solid
bottom up fashion by unioning child boxes. Having constructed the texturing to virtually any type of primitive, so these techniques
qguadtree, we can find all patches withiof a pointp as follows. can readily be applied to texture subdivision surfaces. It is less
We start at the root of the quadtree and compare the bounding boxclear, however, how to apply parametric texture mapping, and more

andp7, p5, andps are the rest positions of the three points.

By adjustingks, k4 andk, both globally and locally, we have
been able to simulate a reasonably wide variety of cloth behavior. In
the production ofseri's game we found that Geri's jacket looked a
great deal more realistic when we modulakgtver the surface of
the jacket in order to provide more stiffness on the shoulder pads, on
the lapels, and in an area under the armpits which is often reinforced
in real jackets. Methods for specifying scalar fields likeover a
subdivision surface are discussed in more detail in section 5.1.



generally, procedural texturing to subdivision surfaces since, unlike (described more fully below) for the seams of his jacket.

NURBS, they are not defined parametrically. The texture coordinates and¢ mentioned above are each in-
With regard to texture mapping, subdivision surfaces are more stances of a scalar field; that is, a scalar-valued function that varies
akin to polygonal models since neither possesses a glaba) over the surface. A scalar fieltlis defined on the surface by assign-

parameter plane. The now-standard method of texture mappinging a valuef, to each of the control verticas The proof sketch
a polygonal model is to assign texture coordinates to each of thein Appendix C argues that the functigf(p) created through sub-
vertices. If the faces of the polygon consist only of triangles and division (wherep is a point on the limit surface) varies smoothly
quadrilaterals, the texture coordinates can be interpolated acrosswvherever the subdivision surface itself is smooth.
the face of the polygon during scan conversion using linear or bi-  Scalar fields can be used for more than just parametric texture
linear interpolation. Faces with more than four sides pose a greatermapping — they can be used more generally as arbitrary param-
challenge. One approach is to pre-process the model by splitting eters to procedural shaders. An example of this occurs on Geri's
such faces into a collection of triangles and/or quadrilaterals, us- jacket. A scalar field is defined on the jacket such that it takes on
ing some averaging scheme to invent texture coordinates at newlylarge values for points on the surface near a seam, and small values
introduced vertices. One difficulty with this approach is that the elsewhere. The procedural jacket shader used the value of the this
texture coordinates are not differentiable across edges of the origi-field to add the apparent seams to the jacket. We used other scalar
nal or pre-processed mesh. As illustrated in Figures 11(a) and (b),fields to darken his nostril and ear cavities, and to modulate various
these discontinuities can appear as visual artifacts in the texture,physical parameters of the cloth in the cloth simulator.
especially as the model is animated. We assign scalar field values to the vertices of the control mesh
in a variety of ways, including manual assignment, smoothing, and

painting. By smoothing we mean that the field valigsre manu-
ally specified at a subset of the control points. The remaining field
values are then determined using Laplacian smoothing. An example
of relatively careful manual assignment and smoothing is illustrated
in Figure 12. By painting we mean the specification of a scalar field
by painting an intensity map on one or more rendered images of the
surface. We then use a least squares solver to determine the field
values that best reproduce the painted intensities.
5.2 Implementation issues

) (b)

We have implemented subdivision surfaces, specifically semi-sharp
Catmull-Clark surfaces, as a new geometric primitive in Render-

Man.

Our renderer, built upon the REYES architecture [4], demands
that all primitives be convertible into grids of micropolygons (i.e.
half-pixel wide quadrilaterals). Consequently, each type of prim-
itive must be capable of splitting itself into a collection of sub-
patches, bounding itself (for culling and bucketing purposes), and
dicing itself into a grid of micropolygons.

Each face of a Catmull-Clark control mesh can be associated
with a patch on the surface, so the first step in rendering a Catmull-
Clark surface is to split it in into a collection of individual patches.

© 7 The control mesh for each patch consists of a face of the control

mesh together with neighboring faces and their vertices. To bound
) . each patch, we use the knowledge that a Catmull-Clark surface lies
Figure 11: (a) A texture mapped regular pentagon comprised of \yithin the convex hull of its control mesh. We therefore take the
5 triangles; (b) the pentagonal model with its vertices moved; (€) pounding box of the mesh points to be the bounding box for the
A subdivision surface whose control mesh is the same 5 triangles patch. Once bounded, the primitive is tested to determine if it is
in (&), and where boundary edges are marked as creases; (d) thgjiceaple; it is not diceable if dicing would produce a grid with too
subdivision surface with its vertices positioned as in (b). many micropolygons or a wide range of micropolygon sizes. If
the patch is not diceable, then we split each patch by performing a
Fortunately, the situation for subdivision surfaces is profoundly subdivision step to create four new subpatch primitives. If the patch
better than for polygonal models. As we prove in Appendix C, is diceable, itis repeatedly subdivided until it generates a grid with
smoothly varying texture coordinates result if the texture coordi- the required number of micropolygons. Finally, we move each of
nates(s,t) assigned to the control vertices are subdivided using the grid points to its limit position using the method described in
the same subdivision rules as used for the geometric coordinatesHalsteacet. al.[8].
(z,y,2). (In other words, control point positions and subdivi- An important property of Catmull-Clark surfaces is that they
sion can be thought of as taking place in a 5-space consisting of give rise to bicubic B-splines patches for all faces except those in
(z,y, z, s,t) coordinates.) This is illustrated in Figure 11(c), where the neighborhood of extraordinary points or sharp features. There-
the surface is treated as a Catmull-Clark surface with infinitely fore, at each level of splitting, it is often possible to identify one or
sharp boundary edges. A more complicated example of paramet-more subpatches as B-spline patches. As splitting proceeds, more
ric texture on a subdivision surface is shown in Figure 12. of the surface can be covered with B-spline patches. Exploiting
As is generally the case in real productions, we used a combi- this fact has three advantages. First, the fited 4 size of a B-
nation of texturing methods to create Geri: the flesh tones on his spline patch allows for efficiency in memory usage because there
head and hands were 3D-painted, solid textures were used to adds no need to store information about vertex connectivity. Second,
fine detail to his skin and jacket, and we used procedural texturing the fact that a B-spline patch, unlike a Catmull-Clark patch, can be



split independently in either parametric direction makes it possible
to reduce the total amount of splitting. Third, efficient and well
understood forward differencing algorithms are available to dice B-
spline patches [7].

vision rules in the neighborhood of a sharp feature. The same can
be done for Catmull-Clark surfaces, as we now describe.

Face points are always positioned at face centroids, independent
of which edges are tagged as sharp. Referring to Figure 4, suppose

We quickly learned that an advantage of semi-sharp creases ovethe edgev’ ej- has been tagged as sharp. The corresponding edge

infinitely sharp creases is that the former gives smoothly varying

point is placed at the edge midpoint:

normals across the crease, while the latter is guaranteed not to. This

implies that if the surface is displaced in the normal direction in a
creased area, it will tear at an infinitely sharp crease but not at a
semi-sharp one.

(b)

Figure 12: Gridded textures mapped onto a bandanna modeled us-

ing two subdivision surfaces. One surface is used for the knot, the
other for the two flaps. In (a) texture coordinates are assigned uni-
formly on the right flap and nonuniformly using smoothing on the
left to reduce distortion. In (b) smoothing is used on both sides and
a more realistic texture is applied.

6 Conclusion

Our experience using subdivision surfaces in production has been
extremely positive. The use of subdivision surfaces allows our
model builders to arrange control points in a way that is natural
to capture geometric features of the model (see Figure 2), without
concern for maintaining a regular gridded structure as required by
NURBS models. This freedom has two principal consequences.
First, it dramatically reduces the time needed to plan and build an
initial model. Second, and perhaps more importantly, it allows the
initial model to be refined locally. Local refinement is not possi-
ble with a NURBS surface, since an entire control point row, or
column, or both must be added to preserve the gridded structure.
Additionally, extreme care must be taken either to hide the seams
between NURBS patches, or to constrain control points near the
seam to create at least the illusion of smoothness.

By developing semi-sharp creases and scalar fields for shading,
we have removed two of the important obstacles to the use of subdi-
vision surfaces in production. By developing an efficient data struc-
ture for culling collisions with subdivisions, we have made subdi-
vision surfaces well suited to physical simulation. By developing a
cloth energy function that takes advantage of Catmull-Clark mesh

structure, we have made subdivision surfaces the surfaces of choice

for our clothing simulations. Finally, by introducing Catmull-Clark
subdivision surfaces into our RenderMan implementation, we have

shown that subdivision surfaces are capable of meeting the demands

of high-end rendering.

A Infinitely Sharp Creases

Hoppe et. al. [10] introduced infinitely sharp features such as
creases and corners into Loop’s surfaces by modifying the subdi-

et = 25 Y
The rule to use when placing vertex points depends on the number
of sharp edges incident at the vertex. A vertex with one sharp edge
is called a dart and is placed using the smooth vertex rule from
Equation 2. A vertex' with two incident sharp edges is called a
crease vertex. If these sharp edgesdrg andv'ey,, the vertex

pointv’*! is positioned using the crease vertex rule:

ej- +6v° + el
—

The sharp edge and crease vertex rules are such that an isolated
crease converges to a uniform cubic B-spline curve lying on the
limit surface. A vertexv® with three or more incident sharp edges
is called a corner; the corresonding vertex point is positioned using
the corner rule

©)

meaning that corners do not move during subdivision. See
Hoppeet. al.[10] and Schweitzer [15] for a more complete dis-
cussion and rationale for these choices.

Hoppeet. al. found it necessary in proving smoothness proper-
ties of the limit surfaces in their Loop-based scheme to make further
distinctions between so-called regular and irregular vertices, and
they introduced additional rules to subdivide them. It may be nec-
essary to do something similar to prove smoothness of our Catmull-
Clark based method, but empirically we have noticed no anamolies
using the simple strategy above.

Ui+1 —

)

B General semi-sharp creases

Here we consider the general case where a crease sharpness is al-
lowed to be non-integer, and to vary along the crease. The follow-
ing procedure is relatively simple and strictly generalizes the two
special cases discussed in Section 3.

We specify a crease by a sequence of edges:, ... in the con-
trol mesh, where each edgehas an associated sharpness. We
associate a sharpness per edge rather than one per vertex since there
is no single sharpness that can be assigned to a vertex where two or
more creases crods.

During subdivision, face points are always placed at face cen-
troids. The rules used when placing edge and vertex points are
determined by examining edge sharpnesses as follows:

e An edge point corresponding to a smooth edge ¢i.e~= 0)
is computed using the smooth edge rule (Equation 1).

e An edge point corresponding to an edge of sharpasss-=
1 is computed using the sharp edge rule (Equation 7).

e An edge point corresponding to an edge of sharpasss 1
is computed using a blend between smooth and sharp edge
rules: specifically, l[ebsmo0tn, aNdvshqerp b the edge points
computed using the smooth and sharp edge rules, respectively.
The edge point is placed at

(10)

(1 - e~s)vsmooth + €.5VUsharp-

2In our implementation we do not allow two creases to share an edge.
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