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Abstract

We derive necessary and sufficient conditions for tangent planeCndontinuity of stationary subdivision
schemes near extraordinary vertices. Our criteria generalize most previously known conditions. We introduce a
new approach to analysis of subdivision surfaces based on the ideawiitteesal surface Any subdivision sur-
face can be locally represented as a projection of the universal surface, which is uniquely defined by the subdivision
scheme. This approach provides us with a more intuitive geometric understanding of subdivision near extraordinary
vertices.
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1 Introduction

The goal of this work is to establish conditions that are both necessary and sufficient for tangent plane continuity and
C*-continuity of subdivision surfaces at extraordinary vertices. We propose an approach to the analysis of subdivision
near extraordinary vertices based on the ideandfersal surfacesAny subdivision surface ilR? can be regarded as

a projection of a unique (up to an affine transformation) universal surface in a higher-dimensional space. The analysis
of smoothness of a subdivision scheme can be reduced to the analysis of smoothness of the corresponding universal
surface. The advantage of this approach is that it exposes the geometric origin of the smoothness conditions and allows
us to decrease the complexity of the derivations without sacrificing the generality.

This paper extends a number of previous results, most importantly, the results of Reif [23] and Prautzsch [19].
We extend the previous work in several ways. We concentrate on conditions that are necessary and sufficient simul-
taneously, thus providing descriptions of certain classes of subdivision schemes. We eliminate or make explicit most
assumptions that were implied by other authors. We do not assume that the subdivision scheme is reduced to spline
subdivision on regular complexes; we do not make any assumptions on the eigenstructure of the subdivision matrix
as it is done, for example, in [23]. The conditions t&f-continuity proposed in [19] are a special case of our con-
ditions. It is important to note, however, that we do assume that the subdivision scheme prGtwmeginuous
limit functions on regular grids, and concentrate on the extraordinary vertices. Powerful methods exist for analysis of
smoothness on regular grids (see, for example, [4, 5, 8, 9]).

Motivation. Our primary motivation is to build a more general theory of smoothness of subdivision surfaces near
extraordinary vertices. From the practical point of view, more general conditions are also desirable for a number of
reasons.

Analysis of schemeh certain cases, the common assumptions of existing conditions are not satisfied for certain
schemes; for example, the Butterfly scheme and midedge subdivision scheme of Peters and Reif [18] for certain
valences have nontrivial Jordan blocks corresponding to dominant eigenvalues; piecewise-subdivision schemes
similar to the scheme of Hoppet al.[13] may have a characteristic map with identically vanishing Jacobian.

*This work was done at the Computer Science Departments of the California Institute of Technology and Stanford University, in 1996-98



Stability and parametric families of schem#ost commonly used schemes (Catmull-Clark, Doo-Sabin, Loop,
Butterfly) have subdivision matrices with largest eigenvallies with 1 > X\ and )\ having geometric multi-

plicity 2. As a consequence, arbitrarily small perturbations of coefficients of the scheme result in matrices that
do not satisfy common assumptions on subdivision matrices. If we consider parametric families of schemes, it
is also likely that for certain values of parameters we obtain schemes with derogatory subdivision matrices.

Construction of new schemebklnderstanding of the structure of the classes of tangent plane continuous and
C*-continuous schemes would help to make better choices when constructing new schemes.

Previous work. First conditions for tangent plane continuity of subdivision surfaces were discussed by Doo and
Sabin [6] and Ball and Storry [2]. Halsteadlal. [11] also discuss analysis of subdivision surfaces. Sufficient condi-
tions for C'-continuity were proposed by Reif [23] (our results are briefly compared to Reif’s results in Sections 3.3
and 4). As we have already mentioned, sufficient conditions and partial necessary conditiofisctuntinuity are

given in Prautzsch [19]. More recently, specific schemes were analyzed by Habib and Warren [10], Schweitzer [24]
and Peters and Reif [17]. Several ideas of this paper originate in the work of Warren [25]. The idea of the universal
surface was suggested to us by Tom Duchamp.

Overview. We consider subdivision surfaces defined on simplicial complexes. Similar to the regular setting, a
surfacef : |K| — R3 defined on a simplicial compleX can be decomposed into a sum of basis functions:

Flel(y) = p(v)pu(y) (1.1)

wherep(v) are the control points iRR3.

For schemes with finite support we need only a finite number of basis functions to represent the surface near an
extraordinary vertex. Let be the vector of basis functions, that contribute tof on the neighborhood’; of an
extraordinary vertex, consisting of the triangles of the complex adjacent to the vertex. Equation (1.1) can be written in
vector formf[p] = (p, 1), One of the crucial ideas of this paper becomes apparent from this vector equation: we regard
the surfaced[p] generated by subdivision as projections of a higher-dimensional surface defied by — R?,
which we call theuniversal surface

If S is the subdivision matrix, that is, the control poipts ' near the extraordinary vertex can be computed from
control pointp’ usingp’*! = Sp?, then the subdivision surface is invariant under the action of the adjoint of the
subdivision matrix orR?:

P(y/2) = STY(y) (1.2)

We show that almost all possible surfaces generated by subdivision are tangent plane continuous at extraordinary
vertices of a fixed valence, if and only if the universal surface is tangent plane continuous; same is @tie for
continuity.

To find conditions on the universal surfageand subdivision matri¥ that are necessary and sufficient for tangent
plane continuity, we use the following observation: the tangent planes to the universal surface can be characterized by
the wedge products of tangent vectar§y) = 914 (y) A d21(y); the subdivision matrix defines a linear operator on
RP; this operator can be extendedAd(R?), the space of 2-vectors. LALS be the matrix of the extended operator.

The structure of théangent subdivision matriXx.S' is completely determined by the structuresfUsing this matrix,
we can write a scaling relation for the normals:

w(y/2) = 4AS T w(y)

It follows from this relation that the sequence of 2-vectors defining the tangent planes atpgif2sy/4 ... is
w(y), ASTw(y), (AST)?w(y), . ... This fact indicates that the question of tangent plane continuity can be reduced to
a general question of convergence of directions of veciéisto a common directions = 0. .. for a matrixA and
some initial vectow. Once conditions onA.S are established, we can reduce them to the conditiorts on

Conditions for tangent plane continuity form the foundation of our resdltscontinuity conditions are immedi-
ately obtained from tangent plane continuity conditions using a general geometric fact (Proposition 1.2).



OnceC'"* continuity is established, the universal surface can be thought of as a function over the tangent plane
with an isolated singularity; the scaling relation imposes further constraints. The scaling relation (1.2) suggests that
the components of in a suitably chosen basis are homogeneous functions; if the surface is reparameterized over
the tangent plane, the components of the new parameterizatiquaséhomogeneous functionBhe conditions for
C*-continuity for this type of functions are well-known in singularity theory [1, 14] for arbitrary number of variables;
we re-derive these conditions for the specific case of two variables in a form more convenient for subdivision surfaces,
and also consider a possible non-quasihomogeneous case.

Assumptions. In all our derivations we assume a single (although quite strong) property of the subdivision scheme
in the regular setting: the subdivision scheme should produce atd&asbntinuous (and for the results @+-
continuity, C*-continuous) limit functions. We do not need the scheme to be stable or even stationary, as long as
it is known that it produces sufficiently smooth basis functions away from extraordinary vertices, and the universal
surface satisfies scaling relations. This approach has the advantage of identifying the most general properties following
from the scaling relation; however, for most practical schemes it is likely to be possible to make somewhat stronger
statements using other properties, for example, stability or the convex hull property for schemes with nonnegative
coefficients.

Main results. This paper contains four main results. The first result is a general necessary and sufficient condition
for tangent plane continuity (Theorem 3.2). In additionCtb-continuity on regular complexes, the only assumption
that we make is Condition A (Section 1.5), which is a mild nondegeneracy requirement.

With stronger nondegeneracy assumptions, which hold for most schemes, we are able to obtain simpler necessary
and sufficient conditions for tangent plane continuity (Corollary 3.3 and equivalent Theorem 3.5). These results
provide most insight into the properties of subdivision near extraordinary points and are central to this paper.

Without assuming Condition A, we derive sufficient conditions (Theorem 3.6), that extend the conditions of
Reif [22, 23].

Finally, Theorem 4.1 gives a general necessary and sufficient conditiéiffoontinuity. In an important special
case when the parametric map coincides with the characteristic map (Section 3.3) we derive explicit necessary and
sufficient conditions fo>*-continuity (Theorem 4.2).

It is important to note that the conditions presented in this paper have primarily theoretical value; if one desires
to verify smoothness of a specific scheme, more specific conditions have to be derived. A general automatic method
for verifying C''-continuity based on the results presented in this paper is described in [27]. Necessary conditions
presented here can be used to guide the construction of subdivision schemes and evaluate existing ones. In [28], we
have used an extension of our results to the surfaces with boundary to detect and fix some important shortcomings of
such commonly used subdivision schemes as Catmull-Clark [3] and Loop [15].

Structure of the paper. The paper is structured as follows: Section 1 gives a brief formal description of subdivision
on complexes. In Section 2 we reduce the analysis of subdivision schemes to the analysis of universal surfaces.

In Sections 3.1 and 3.2 we derive criteria for tangent plane continuity. Section 3.3 describes a sufficient condition
for tangent plane continuity.

In Section 4 we state the criteria f6f*-continuity.

Section 6 contains proofs of several facts used to derive the main theorems of the paper.

Several proofs are presented in a very brief form; some proofs are omitted. Complete exposition can be found in
[26].

Notation!
[+ normalization of a vector
i) characteristic map, 3.3
%) smooth parameterization of the universal surfacex—!, 1.5
v,(y) basis function at the vertex 1.1
K transformation/; — R?, 1.5

1The numbers after each item in the list indicate in which section the symbol is defined



A%2(RP) space of wedge products of vectors frif, 1.3

Ai eigenvalues of the subdivision matrix, 1.2

1\ parametric map, 3.2

0 universal surfacé&; — RP, 1.2

b;'.T complex generalized eigenvectors of the subdivision matrix, 1.2

c§r real generalized eigenvectors of the subdivision matrix, 1.2

Ctrl(V) control set of a set of verticds, 1.4

Dy, directional set, 3.1

e;'-r basis vectors of the basis for the subdivision masfx 1.2

flp] limit function f : |K| — B generated by subdivision frome P(V, B), 1.1
}} complex eigenbasis functions, 1.2

9 real eigenbasis functions, 1.2

h%, basis vectors of the basis for the subdivision majx.2

J[] the Jacobian of a mappiig? — R?, 1.5

J; a cyclic subspace of a matrix with eigenvalug 1.2

K complex, 1.1

K the result of subdividings j times, also denotef)’ (K), 1.1

N (v, K) m-neighborhood of the vertex 1.1

n order of the cyclic subspacg, 1.2

P(p,q) guasihomogeneous polynomials, 4

P(p,q) complex quasihomogeneous polynomials, 4

P(V,B) the space of functions on the set of verticed/ofvith values inB, 1.1

Proj(v, W) projection of a vector onto the subspdéespanned by a set of basis vectors, 3.1
R regular complex, 1.1

Rk k-regular complex, 1.1

S subdivision matrix or subdivision scheme, 1.1, 1.2

S[K] subdivision operatdP(V) — P(V'1), 1.1

AS tangent subdivision matrix, 3.1

|K| complex regarded as a topological space, 1.1

Un topologicalm-neighborhood of the central vertex okaregular complex, 1.2
w(y) p(p — 1)/2-dimensional vectod, ¢ A d21p, 1.5

sectionSubdivision Schemes: Formal Description and Concepts of Smoothness

1.1 Subdivision on Complexes

This section is a brief formal description of general subdivision.

Simplicial complexes. Subdivision surfaces are naturally defined as functions on two-dimensional simplicial com-
plexes. Recall that a simplicial compléx is a set of vertices, edges and triangleRilN, such that for any triangle all
its edges are ik(, and for any edge its vertices arefin We assume that there are no isolated vertices or e¢lyés.
denotes the union of triangles of the complex regarded as a sulReét wfith induced metric. We say that two com-
plexesK; and K> areisomorphicif there is a homeomorphism betwels, | and| K| that maps vertices to vertices,
edges to edges and triangles to triangles.

A subcomplexf a complexk is a subset of{ that is a complex. A 1-neighborhod¥; (v, K) of a vertexv in
a complexk is the subcomplex formed by all triangles that haves a vertex. Then-neighborhood of a vertexis
defined recursively as a union of all 1-neighborhoods of vertices ifvthe 1)-neighborhood of. We omitK in the
notation for neighborhoods when it is clear what complex we refer to.

Recall that dink of a vertex is the set of edges o (v, K) that do not contain. We consider only complexes
with all vertices having links that are connected simple polygonal lines, open or closed. If the link of a vertex is an
open polygonal line, this vertex is a boundary vertex, otherwise it is an internal vertex.

Most of our constructions use two special types of complexgsregular complexe&;, and theregular complex
R. Each complex is simply a triangulation of the plane consisting of identical triangles. In the regular complex each
vertex has exactly 6 neighbors. Irkaregular complex all vertices hawveneighbors, except one vertéX which has
k neighbors. We call’ the central vertex of &-regular complex and identify it with zero in the plane.



Subdivision of simplicial complexes. We can construct a new compléx(K) from a complexK by subdivision,
adding a new vertex for each edge of the complex and replacing each old triangle with four new triangies, bet
the midpoint of the edgév, w); if (u, v, w) is a triangle ofK, then (u, My, Muw)s (U, My, M)y (W, Mgy, M)
and (M, Myw, Mayw ) are triangles oD (K'). Note thatk-regular complexes are self-similar, thati3(R;) andRy
are isomorphic.

We use notatiork’ for the j times subdivided comple®’ (K) andV” for the set of vertices ok 7. Note that the
sets of vertices are nested” c V! C .... We call the elements of the uniarf° ,V* thedyadic pointof K.

Subdivision schemes. Next, we attach values to the vertices of the complex; in other words, we consider the space
of functionsV — B, whereB is a vector space ov@. The rangeB is typically R or C! for somel. We denote this
spaceP(V, B), or P(V), if the choice ofB is not important.

A subdivision schemfor any functionp?(v) on verticesV’/ of the complexK? computes a functiop’ ! (v)
on the vertices of the subdivided compleXK7) = K7+!. More formally, a subdivision scheme is a collection of
operatorsS[K| defined for every compleX’, mappingP(V) to P(V'!). We consider only subdivision schemes that
are linear, that is, the operato$$’| are linear functions off(K). In this case the subdivision operators are defined
by equations

pl (U) = Z auwpo(w)

weV

for all v € V!, The coefficients:,,, may depend orf. We restrict our attention to subdivision schemes which are
finitely supported, locally invariant with respect to a set of isomorphisms of complexes and affinely invariant.

A subdivision scheme ifinitely supportedf there is an intege® such thata,,, # 0 only if w € Ny (v, K)
for any complexK (note that the neighborhood is taken in the comgi&x !). We call the minimal possibl&/ the
support sizef the scheme.

We assume our schemes tolbeally definedandinvariant with respect to a set of isomorphistisTogether these
two requirements can be defined as follows: there is a contanth that if for two complexe&; and K> and two
verticesv; € V; andvy € Vs there is an isomorphism : Ny, (v1, K1) — N (ve, K2), p € G such thafp(vy) = va,
thena,, » = a.,,(w)- IN Most cases, thiecalization sizel, = M.

We assume that the sét contains isomorphisms of 1-neighborhoods of any vertex of any complex with a sub-
complex of ak-regular complex possibly with boundary. In addition, if it contains an isomorphisrk’; — Ko, it
also contains the induced isomorphismi®fK;) — D(K>), as well as the restrictions pfto subcomplexes oK.

For most common schemes, the &etoincides with all possible isomorphisms of complexes. An example of a
nontrivial setG is the set of isomorphisms of tagged complexes: we can tag some edges of the complex, and propagate
the tags to the edges of the subdivided complex. We can allow only isomorphisms that map tagged edges to tagged
edges. Analysis of quadrilateral-based schemes, such as Catmull-Clark and Doo-Sabin, can be reduced to analysis of
subdivision schemes on complexes introducing auxiliary vertices into complexes and tagging certain edges. Schemes
on tagged complexes also can be used to create surfaces with creases. The requirement that we impose on the set
G guarantees that the surfaces generated by subdivision on arbitrary complexes are locally identical to the surfaces
generated by subdivision orkaregular complex, possibly with boundary (see below.)

The final requirement that we impose on subdivision schemafiie invarianceif 7' is a linear transformation
B — B, then for anyy Tp’™(v) = 3 a.,Tp’ (v). This is equivalent to requiring that all coefficients,, for a
fixedv sumup to 1.

Limit functions.  For each vertex € U527 there is a sequence of valugqv), p"*'(v), ... wherei is the
minimal number such that* containsv.

Definition 1.1. A subdivision scheme is called convergent on a compflewith vertex setl/, if for any function
p € P(V, B) there is a continuous functiofidefined or| K | with values inB, such that

lim sup [[p?(v) = f(v)[|, = 0
IO eV

The functionf is called the limit function of subdivision.



Notation: f[p] is the limit function generated by subdivision from the initial valpes P(V).

Itis easy to show that if a limit function exists, it is uniques#bdivision surfacés the limit function of subdivision
on a complexk” with values inR3. In this case we call the initial valug8(v) the control pointsof the surface.

Similar to Theorem 2.1 of [4] we can represent any limit function of subdivision as a linear combinabesisf
functions A basis functionp, (y) : |K| — R atavertex is obtained from the initial valueg, € P(V,R), d,(v) =1,
§y(w) = 0if w # v. Letp® be some initial values on a complék If subdivision converges,

%) = D p°(W)eu(y) (1.3)

veVO

Reduction to k-regular complexes. Locally any surface generated by a subdivision scheme on an arbitrary complex
can be thought of as a part of a subdivision surface definedaregular complex, if the set of isomorphisif's with
respect to which the scheme is invariant, satisfies the requirements above. The reason for this can be easily understood
from Figure 1. More formally this can be proved by establishing isomorphisms between neighbakhdods? ) of
any vertex ofK7 for sufficiently largej and neighborhoodd;, (0, R;,) of the central vertex of thg-regular complex
or regular complex and proving that they aredn
Note that this fact alone does not guarantee that it is sufficient to study subdivision schemes bwlgatar
complexes (see Section 1.3).

=<

Figure 1: Neighborhoods of vertices, B andC' isomorphic to neighborhoods in regulat @andC) and k-regular
complexes] = 2.

If the complex has boundary, we also need to consider regulakardular complexes with boundaries. We
concentrate on the analysis for closed surfaces, and do not consider the boundary case.

The schemes for subdivision surfaces are typically constructed from schemes that géfieratginuous limit
functions f[p] on a regular complex. We assume that this is the case, and foau$-oantinuity near extraordinary
vertices.

1.2 Subdivision Matrices

We have already observed that we have to consider primariggular complexes, which are just triangulations of the
plane. Consider the part of a subdivision surfd¢g with y € U{ = |N;(0,R})|, defined on the:-gon formed by
triangles of the subdivided compléii adjacent to the central vertex. It is straightforward to show that the values at
all dyadic points in thist-gon can be computed given the initial valyégv) for v € NL(O,Ri). In particular, the
control pointsp’+!(v) for v € N1 (0, R.™) can be computed using only control poipégw) for w € Nz (0, R]).
Let’ be the vector of control pointsf (v) for v € N1 (0,R},). Letp + 1 be the number of vertices iN, (0, Ry).

As the subdivision operators are linegi ! can be computed frop¥ using a(p + 1) x (p + 1) matrix S7:

P = sip
If for somem and for allj > m, S7 = S™ = S, we say that the subdivision schemeiationary on the:-regular
complex or simply stationary, and call' the subdivision matrixof the scheme. Note that our definition in the case
k = 6 is weaker than the standard definition of stationary schemes on regular complexes [4].



As we will see, eigenvalues and eigenvectors of the matrix have fundamental importance for smoothness of subdivi-
sion.

Eigenbasis functions. let Ay, \;, ... \; be different eigenvalues of the subdivision matrix. The following lemma,
proved in [26], is similar to a lemma of Reif [23]:

Lemma 1.1. If a subdivision scheme converges on the regular complex, it is necessary and sufficient for convergence
on ak-regular complex that the subdivision mati$xhas eigenvalue 1 with a single cyclic subspace of size 1 and all
other eigenvalues have magnitude less than 1.

Let \p = 1. For any); let J;f,j = 1... be the complex cyclic subspaces corresponding to this eigenvalue.
Let n; be theordersof these cyclic subspaces; the order of a cyclic subspace is equal to its dimension minus one.
_ Let b}r, r=0... n; be the complex generalized eigenvectors corresponding to the cyclic sut]épﬁhe vectors
b;, satisfy

Sb;tr = )\ib;'»r + b; e T >0, Sb;io = /\Z-b;'-O (1.4)
We use the following rules for enumerating the cyclic subspacés of

e All eigenvalues are enumerated in the order of nonincreasing magnitude.

o If the magnitudes of eigenvalues are equal, they are enumerated in the order of nonincreasing order of the largest
cyclic subspace.

o If the eigenvalues have equal magnitudes, and equal orders of highest-order cyclic subspace, real eigenvalues
have smaller numbers than complex; the real positive eigenvalue if there is one, has number less than real
negative; two complex-conjugate eigenvalues have sequential numbers; the order of complex-conjugate pairs of
eigenvalues is insignificant for our purposes.

e For each eigenvalue the cyclic subspaces are enumerated in nonincreasing order>igl, > n% > .. ..

The complexeigenbasis functionare the limit functions defined bﬁ;fr = f[bj»r} : Uy — C. Itimmediately
follows from (1.3) that any subdivision surfagép] : U; — R? can be represented as

fPly) = B fi () (1.5)

VLS

whereg;, ¢ C3, and ifbl, = @ B, = ﬂT’“t where the bar denotes complex conjugation.
One can show using the definition of limit functions of subdivision and (1.4) that the eigenbasis functions satisfy
the following set ofscaling relations

W) =Nl )+ feay) >0, fio(y/2) = Nifio(y) (1.6)

Real eigenbasis functions. As we consider real surfaces, it is often convenient to use real Jordan normal form of
the matrix rather than the complex Jordan normal form. For any pair of the complex-conjugate eigekyalies
we can choose the complex cyclic subspaces in such a way that they can be arranged irigfolﬂaimdbér = bg?r
for all j andr. Then we can introduce a single real subspace for each pair, with thecp,a,siﬁm r=20.. nj
wherec}, = Rb}, andcjfr = Qb’,.. We call such subspacderdan subspaceThen we can introduce real eigenbasis
functionsg’, (y) = fi,.(y) for real \;, andgi,(y) = Rfi.(y), g}.(y) = Sfi,.(y) for a pair of complex-conjugate
eigenvalueg\;, \y). For a Jordan subspace corresponding to pairs of complex eigenvalues the order is the same as
the order of one of the pair of cyclic subspaces corresponding to it. We follow the same rules for enumerating Jordan
spaces, with one alteration: instead of two sequences of cyclic subspaces corresponding to a pair of complex Jordan
eigenvalues we have a single sequence of Jordan subspaces.

Similar to (1.5) we can write for any surface generated by subdivisiaii,on



flplw) = al,gh () 1.7)

2,77

Now all coefficientaj-r are real. Eigenbasis functions corresponding to the eigenvalue 0 have no effect on tangent
plane continuity olC*-continuity of the surface at zero. From now on we assumeithgt 0 for all .

We can assume that the coordinate systeiRiris always chosen in such a way that the single componefipbf
corresponding to eigenvalue 1 is zero. This allows us to reduce the number of terms in £1.7) to

Universal map. The decomposition (1.7) can be written in vector form. hgl be an orthonormal basis &?.
Lety bed, ;. gi.ht,; thisis amap/; — RP. Leta',a®,o® € RP be the vectors composed of components of
coeﬁicientSa;lr from (1.7) (each of these coefficients is a vectoRi#). Then (1.7) can be rewritten as

fly) = (@, ah), (¥, 0?), (¥, a”)) (1.8)

This equation indicates that all surfaces generated by a subdivision schéfmeambe viewed as projections of a
single surface ilR?. We cally theuniversal mapand the surface specified lgytheuniversal surfaceThe universal
map plays an important role in our constructions.

In the chosen basis the matrsxis in the real Jordan normal form. Note that by definitiorbdbr anya € R?

(a,1(y/2)) = (Sa,¥(y))

Using the well-known formula for inner product§u, v) = (u, STv), we get

(z,9(y/2)) = (z,STY(y)), foranyz
This means that the scaling relations can be jointly written as

P(y/2) = STY(y) (1.9)

Although ST is not in Jordan normal form, a simple permutation of the vectors of the basis resfliceslordan
normal form; specifically, for the Jordan subspace of a real eigenvaloéordern;, introduce a new basis;-T =
he that is, simply reverse the order of basis vectors.

jng—r?

1.3 Tangent Plane Continuity andC*-continuity
We are going to use the following definition 6f -continuity of a surface:

Definition 1.2. Consider a surfac€¢M, f) whereM is a topological space, andl is a mapf : M — RP. For any

x € M and a neighborhood/,, C M, let h be a parameterization of (U,) over a diskD in the plane, that is, a
maph : D — f(U,) C RP. The surfacg M, f) is called C'-continuousif for any z there is a neighborhood’,
and a parameterizatioh which is regular, that isC'-continuous and with Jacobi matrix of maximal rank (2). If the
parameterizatiorh can be chosen to b€*, then the surface i€'*-continuous.

Surfaces satisfying this definition are two-dimensional manifolds immersBd.ilNote that the parameterization
h and the map are not necessarily related. For subdivision surfaces defined on a coiiplex= | K| and f is the
limit function of subdivision.



Tangent plane continuity. It turns out to be useful to split the task of establishitttrcontinuity of a subdivision
surface at extraordinary vertices into two steps: first, check the existence of a tangent plane, then determine if the
projection into the tangent plane is injective (see Proposition 1.2 below).

In R3 planes are conveniently characterized by their normals. Our plan is to reduce analysis of subdivision to
analysis of the universal surface. In order to achieve this, we need a characterization of tangent planes of 2-dimensional
surfaces iRR?. Instead of the normals, we can is&ectors which are elements of?(R”). Any plane inR? spanned
by vectorsv, v, corresponds to a one-dimensional subspac&?(iR?) spanned by, A v,. It is more convenient
for our purposes to consideriented tangent planesvhich correspond to directions ik?(R?) (sets of vectors of
the formkv; A ve, wherek > 0). There is a unique 2-vector of length 1 for each direction. We denote this 2-vector
[v1 A va]4. Forp = 3, this 2-vector can be identified with the unit normal to the plane.

Now we can define tangent plane continuityRf:

Definition 1.3. Let D be the unit disk in the plane. Suppose a surfgkg f) in a neighborhood of a point € M is
parameterized by : D — RP, which is regular everywhere except 0, ab@d) = f(z). Letw(y) = [01h A O2h] .
whereo; h and d;h are derivatives with respect to the coordinates in the plane of theldiskhe surface isangent
plane continuousat x if the limitlim, . w(y) exists.

It is possible to characterize tangent planes in such a way that no orientation is specified; then the limit plane
might exist, even if the limit of consistently oriented normals does not. One can show that such surfaceg’are not
continuous; as we regard tangent plane continuity as an intermediate stage on theXagotdinuity, we choose a
somewhat stronger definition including orientation.

The following Proposition shows the relation between tangent plane continuity sedntinuity:

Proposition 1.2. Suppose a surface is tangent plane continuous at zeror bet the limit at zero of the oriented
tangent planes, and Ie?, : R? — R? be the projection oR” onto the plane-. Then the surface i€ -continuous if
and only if there is a neighborhoal! of zero, such thaP; restricted tof (D) is injective.

This proposition is proved in Section 6.1.

1.4 (C'-continuous Subdivision Schemes

It would be natural to say that a subdivision schemé&iscontinuous if all surfaces generated by a scheme are
continuous. However, this requirement is too restrictive: in general, it is impossible to construct schemes of this type;
even for spline surfaces we can find configurations of control points that lead t6'hoontinuous surfaces. We
adopt a weaker notion @f!-continuity of a scheme. Recall that the collections of control values for a given complex
can be regarded as elements of a linear s4€). As we consider only local schemes, it is sufficient to consider
only finite complexes. For such complexes, the sp&&&3) are finite-dimensional, and we can define a distance on
P(V) identifying it with a Euclidean space. We consider a subdivision sch&meontinuous on a complek if it
generate€’! continuous surfaces for all initial valupss P(V') excluding a nowhere dense subsef¢t).

This approach introduces a new problem. For a verféat Ctrl( N, (v, K)) be the set of vertices € V such that
the values of the limit functiorf[p] on|N; (v, K')| depend only on the vertices fro@trl(V; (v, K)). Recall that we
reduce the analysis of subdivision on arbitrary complexes to analysisregular complexes using an isomorphism
p betweenNy, (v, K7) and Nz, (0, R;,) for somej. Clearly, the valueg’ (v) on Ny, (v, K7) can be computed from the
valuesp®(v) on Ctrl(v). By linearity of subdivision, there is a matrix (not necessarily squdrsyich thaty’ (v) =
Ap®(v). If the rank of A is less tharp + 1, then the dimension of the space8f(v) on N (v, K7) is less than
the maximal dimensiop + 1 and it can be identified with a proper subspétef the spaceéP;, of functions on the
vertices of Ny, (0, Ry), rather than with the whole space. The simplest example of such complex is a tetrahedron: the
dimension ofP cannot be more than 4, but even for Loop scheme9 for a vertex of valence 3. It might happen that
the subspac® is contained inside the nowhere dense subsét.dbr which subdivision generates surfaces that are
not C''-continuous. We call complexes for which this occoomstraining. It is difficult to characterize constraining
complexes for arbitrary schemes. We simplify our task by excluding such complexes.

This leads us to the following definition:

Definition 1.4. A subdivision scheme (8!-continuous on a compleX if it generatesC' -continuous surfaces for any
choice of control points or’, except a nowhere dense set of configurations. A subdivision schémheamtinuous,
if it is C''-continuous for any non-constraining complex.



Tangent plane continuity of a subdivision scheme is defined in a similar way. This definition allows us to con-
sider only subdivision ok-regular complexes. If a subdivision schemeis-continuous according to our criteria,
additional analysis is needed to identify constraining complexes.

1.5 Singular Parameterizations

To be able to analyze tangent plane continuity of subdivision at extraordinary vertices of Vialereaeed a param-
eterizationp used in the definition, which is regular on a neighborhood of zero irkttegular complex, excluding
zero itself. We cannot use the mapdirectly because the partial derivativeswfdo not exist on the boundaries
between triangles of the-gon U; unlessk = 6. A regular away from zero parameterization can be obtained using
a construction similar, but not identical, to the complex-analytic structure on complexes described by Duchamp and
others [7].

Consider the 1-neighborhodd of the extraordinary vertex of theregular complex. The surfage: U; — R?
defined by subdivision i€''-continuous by assumption in the interior of the triangle€/pfand may be notC'-
continuous on the boundaries between triangles. However, we can map any pair of adjacent triangles to two adjacent
triangles of the regular complex using a piecewise-linear maggifnenf o h~! has to beC! on the interior of the
guadrilateral formed by the two triangles of the regular complex.

Note that any deformation of the two trianglesidf that agrees withh in the limit near the boundary between
the two triangles, and is at leaSt in the interior, can be used instead/ofWe describe a mappingdefined on the
whole neighborhood’; that agrees with mappingdsfor each pair of adjacent triangles Gf .

To define the map:, we identify the plane with the complex plane. Suppose the vertices df-tfen U, are

w/k, 3w /k, ... (2k — 1)7/k. Let hy be the linear scalinqu,v) — (“’”/Gu Si““v). Let x(z) be the map

cos/k 7 sinm/k

xx(2z) = z8/F. The image of the equilateral triangle with vertices®,%, e="/% is contained in the triangl&,, with
two of the edges adjacent to 0 mapping to the edgé% of
Then on the triangl&’,, with vertices 0(2m — 1)« /k, (2m + 1)x/k the mapx can be defined as

K(z) = e~2imn/k (Xk (hk(emmw/kz))) (1.10)
The structure of the mappingis shown in Figure 2

-2imTk 2imTVk
e

Figure 2: Construction of the singul@af!-continuous parameterization

Then for any surfacg : U; — R3 generated by subdivision, the parameterizationx~! is C!-continuous
everywhere except 0; same is true for the parameterizatien) o~ ! of the universal surface. This parameterization
need not be regular.

To be able to reduce analysis of subdivision to analysis of the universal map, we assumpe=thato ! is
regular, which is equivalent to the following condition:

Condition A. For anyy € «(U)

op(y) AN O2p(y) #0 forally € x(Ui),y #0
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If Condition A is violated, then there is a point I such that any surface generated by the subdivision scheme
would have a singularity there. Moreover, one can see from scaling relations for wedge products of tangents (3.1),
that there will be a singularity arbitrarily close to zero. In this work we consider mostly schemes satisfying Condition
A. However, we do not necessarily assuangriori that Condition A is satisfied; in certain cases, weaker assumptions
are sufficient; in other cases, Condition A is implied by other assumtions. When we assume Condition A, we mention
this explicitly.

Normals of subdivision surfaces. There is a simple formula relating the Jacobian of a mapping- R? generated
by subdivision to the wedge produgt: A do7). The Jacobian of a mappingz?t, 22] = ((xt, ), (z2,)) is

JIflzt, 2?]] = (x* A 2®, 019 A Oa1)) (1.11)

Note that the partial derivatives af are defined only on the interior of the trianglesléf;, on the boundaries
only one-sided derivatives exist, excluding zero. Therefore, only one-sided limits of the Jacobian are defined on
the boundaries between triangles. However, one can show using the exptBssiea J[p].J[x '] that these one-
sided limis actually coincide, and the Jacobian is continuou§;0away from zero. Equation (1.11) is valid on the
boundaries too, if one-sided derivativesyofire used.

Equation (1.11) is useful for relating the normals of subdivision surfac@*io the normals of the universal
surface. For a surfacB[z, 22, 23] : U; — R? a normal at any point except zero can be written as

N(y) = [(2* Aa®,w(y), (2 Aat,w(y), (@' Aa? w(y))], y € wU) (1.12)

wherew(y) = 19 (y) A d21(y). Note that Condition A implies that(y) # 0 for all y. Therefore, for any choice of
z', 22, 23, such that at least 2 vectors are independent, the vector above is not zero and the unit normal can be obtained
by normalizing the vector above.

2 Reduction to the Analysis of the Universal Surfaces

Our goal is to relate tangent plane continuity afiti-continuity of the universal surface IR” and tangent plane
continuity of the subdivision scheme. The following theorem holds under our assumptions:

Theorem 2.1. For a subdivision scheme satisfying Condition A to be tangent plane continuou-oegalar com-
plex, it is necessary and sufficient that the universal surface be tangent plane continuous; for the subdivision scheme
to beC*-continuous, it is necessary and sufficient that the universal surfac& lmntinuous.

Proof. Sufficiency is straightforward.
Necessity: tangent plane continui§uppose the universal surface is not tangent plane continuous at zero, that is, the
limit lim,_,o[w(y)]+ does not exist.

Note that[w(y)]. € SPP~1/2=1 the unit sphere i\?(R”). As the sphere is compact, there are two sequences
yl,y2, s € Nsuch thatimg_, oo [w(yl)]+ = w1, lims o0 [w(y?)]+ = u2, andu; # us. As the set of all decomposable
elements iM?(RP) is closedu; = u} Au? anduy = ud A u3 for someul, u?, ul, u3 € RP. As bothu; andu, are
unit vectors and are not equal, at least 3 out of 4 veatbrsi?, u, u3 are linearly independent, af, = —us.

For the purposes of this proof it is convenient to fix a basis sucmghaﬁ.tj = 1, 2 are vectors of the basis (if some
u3 are linearly dependent, we can always modify our choice%‘ ab that the only ones that are dependent, are equal).
We assume thati, andu} are independent far= 1, 2. If there are three independent vectors, we assume:thatd
u3 are independent. Otherwise, = u2 andu} = u?.

First, assume that at least 3 vectogsare independent. For any basjsi = 1...pin R? we can construct a basis
in A2(RP) out of vectors:; A e;, i < j. For the dual basig;, the corresponding basis A é; in A%(RP) is dual to the
basise; A e;. Leta! be the vectors dual ta}, that is, satisfyinga’, uf’) = 6(i — k)d(j — 1), and orthogonal to other
vectors of the basis.

Consider the surfad@?, a3 + @2, @3]. The normals to this surface are given by

N(y) = [((ay + af) A a3, [w(y)]+), (@3 Al [wy)]s), (@ A (a + a), [wy)]+)]
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Note that the limitlim,_. ., N(y!) is [0, 0, 1] if all four vectors are independent;if, = u?, the limit is [0, 0, 2].
For N (y2) we get[1, 0, 0] if all four vectors are independent;ifs = u?, we get[2, 0, 0]. In either case, the sequences
of unit normals{N (y!)]+ and[N(y2)]+ converge to different limits.

In the case of two independent vectors amafighe argument is similar.

In both cases it is easy to see that any surface obtained from the described surfaces by small perturbation will not
be tangent plane continuous. Therefore, there is a set of surfaces of measure greater than zero that are not tangent
plane continuous, and the scheme is not tangent plane continuous.

NecessityC*-continuity. We assume that the universal surface is tangent plane continuous; for the surface to be
C'-continuous, it is necessary and sufficient for the surface to have injective projection into the tangent plane in a
neighborhood of zero (Proposition 1.2). Suppose the projection of the universal surface into the tangent plane is not
injective arbitrarily close to zero. As we have seen, the tangent plane is spanned by two basis v&itoSuppose

these vectors are] andu9, and, ¢, are the corresponding components of the universalmad/; — RP. Let

map¥ be the maf+,2) : Uy — RP. Letr be the tangent plané), : R? — 7 be the projection into the tangent
plane defined by: € R? — ((u{, z), (ul, z)). If P;|y(u,) is notinjective arbitrarily close to zero, then there are two
sequences of pointg,y2 € Uy, s = 1..., such that)(yl) # ¢ (y2) for all s, lims_ o, y! = lims o, y> = 0 and

U(yl) = ¥(y?). We can choose a componentof ¢ that has different values at infinitely many pairs of poipitsy?.
Consider a surface iR? defined by(v1, 12, 1;). The tangent plane to this surface is obtained by projectjrandu?

into R?; this plane coincides with the plane spanned by the first two coordinate axeR @@learly, projection into

this plane is not injective. Now consider arbitrary projectionydhto R3. By a change of coordinates, we can always
reduce it to the form{«y, 9, f) where f is a linear combination of components®f If this linear combination is
sufficiently close ta);, the projection is not injective again. We have constructed an open set of surfaces generated by
subdivision that are naf!-continuous, and the scheme cannotBecontinuous.

The argument is easily extended@¥-continuous surfaces: for the universal surface ta’fecontinuous it is
necessary and sufficient that the inverse of the projection to the tangent plafietinuous. As any subdivision
surface inR?3 can be obtained by applying a linear mappiig R? — R? to the universal surface, the projection
of the surface iR? into its tangent plane is obtained in the same way. We have shown that if the universal surface is
C'-continuous for almost any linear mappiiythe projection into the tangent plane is injective. Then its inverse is
well defined and its derivatives can be computed as linear combinations of the derivatives of the parameterization of
the universal surface over its tangent plane. If the universal surface s*aobntinuous, for almost any choice &f
the subdivision surface iR? is notC*-continuous. O

3 Tangent Plane Continuity

3.1 Tangent Plane Continuity Criterion

In this section we are going to formulate a general criterion for tangent plane continuity of the universal surface. We
make very few assumptions about the subdivision scheme:

e eigenbasis functions arg!-continuous on regular complexes;
e Condition A,
e the scaling relationy(y/2) = STy (y), y € Uy.

Scaling relation holds for any scheme which is stationarykeregular complexes. It is important to keep in
mind that although eigenbasis functions for a stationary subdivision scheme necessarily satisfy scaling relations, the
converse is not true, that is, not every set of functions satisfying scaling relations can be generated by subdivision. We
primarily explore properties of the universal surface that do not depend on the fact that the coordinate functions of the
surface were obtained by subdivision.

Action of the subdivision matrix on tangents. As we are interested in the behavior of the tangent planes to the
universal surface, rather than using the scaling relation for the surface, it is convenient to formulate a scaling relation
for the elements oA?(RP).

We obtain the action of on A%(RP) by setting
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AS(uy Aug) = Suy A Sus

This defines the action on decomposable elements. It is easy to sekSthatinear and can be extended by
linearity to the whole spacé?(R?). We call the matrix of\.S with respect to the basig}, Ak, thetangent subdivision
matrix.

Recall that the scaling relations can be writtenég/2) = S7+(y). Differentiating and taking wedge products,

w(y/2) = 4057 w(y) (3.1)

wherew(y) = 01¢(y) Ad29)(y). Again, although only one-sided partial derivatives exist on the boundaries of triangles
of Uy, the wedge product does not depend on the chosen triangleuttuisis well-defined ori/; away from zero.

If the 2-vectorsw(y), y € U; span the whole spac®?(R?), as we will see below, the smoothness properties of
the scheme are mostly determined by the eigenstructuk&'ofn general, however, this is not the case: it is possible
that two or more functions generated by subdivision are dependent, [ijé;z;l], f[xQ]] (y) = 0for all y. In this case
the tangents to the surface are constrained to the directions perpendicular to the' plage Writing the Jacobian
above agz! A 22, 019 A O21)) we can see that the condition for dependence of two functions generated by subdivision
can be written inA?(RP) as orthogonality to the space spanned by vecidrg), y € U;. The set of all directions
of w(y) is the p-dimensional analog of the set of the directions of normals, i.e., the image of the Gauss map of the
surface.

Definition 3.1. Thedirectional set Dy, is the image of the Gauss m& ¥ (y) A Oa9(y)]4 : Uy — SPP=H/2-1,

The crucial property of the directional sBY, trivially follows from the scaling relation for tangents:v € D,
then[AST v} € Dy.

Asymptotic behavior of vectors under iterated linear transforms. It follows from relations (3.1) that sequences
of 2-vectors of the formj(AS”)*u], are important for analysis of tangent plane continuity. The behavior of such
sequences is best understood if we identif(R?) with the Euclidean spacR?®~1)/2 and regard 2-vectors just
as vectors. We need to determine the conditions on a materd vectorr € R* = R?(®~1)/2 that are necessary
and sufficient for convergence of the sequept®]; ass — co. The conditions for convergence of such sequences
are quite general and have little to do with subdivision. Here we just state the main definitions and the condition for
convergence (Lemma 3.1). The proof can be found in Section 6.2. We make only one assumgtioo@igenvalue
of A is equal to zero and all eigenvalues are less than 1. These assumptions do not lead to a loss of generality.

For each eigenvalue |&f, be the corresponding invariant space, that is, the subspace of vectors that are annulled
by (A — uI)7 for somej. Theorderof any vectow in the invariant subspadé, of a matrix A is the minimal number
j such that € Ker(A — pul)i+1L,

If a vectorv € Vj has ordek, thenAv = pv + v’ wherev’ has orde — 1. By induction we obtain the following
decomposition ofA*v for s > k:

k
A%v=p° Zuq—k ( . i . ) (@ (3.2)
q=0

wherev(@ isin V4, andv(? # 0. As s — oo, the direction ofdv converges to the direction of®).
A decomposition similar to (3.2) can be written for complex eigenvalues. yLie¢ the complex phase of the

eigenvalueu, Ietvgq) = Ro(@, vé‘” = Sv(@. wherev(® are complex generalized eigenvectors of okder

k
A= |l 3l ( g ) 01" cos((s +q = k)x) = 3" sin(s + = k) (3.3)
q=0

Consider an arbitrary vectarin R*. The vectorv can be written as a linear combination of the vectors in the
invariant subspacelg, of A:
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v = ZU“ (3.4)
o

wherev,, € V,,. We also use notatioRroj(v, V,,) for v,,. This decomposition is unique. L&}, be the order of the
vectorv,,, if v, # 0.

For a given vectow, Let M = max{|y

v, # 0}, andky, = max{k,|v, # 0, |u| = M}. DefineM(v) as
{p|n = Mk, = kn}. The setM(v) identifies components od®v that determine the asymptotic behavior of the

direction of A*v. These are the components with coefficients changing &s* , ass — oo with maximal possible
M andk,,.

Lemma 3.1. For a fixed given, if there is a complex or negative € M(v), A°v does not have a limit direction as
s — oo. Otherwise M(v) has a single positive elemenf and the limit direction is given by°(v) = [UJ(C})]JF; The
sequencé{u’(v) — [A*v] || converges to zero no slower thats .

We apply this Lemma to the tangent subdivision mafix acting on 2-vectors.

Tangent plane continuity criterion. We are ready to state a general criterion for tangent plane continuity. Recall
that [4AST w(y)] . = [ASTw(y)]+ = [w(y/2")]+, s = 0..., defines a sequence of tangent planes at pginyg2
. in U;y. ltis clearly necessary for existence of a limit tangent plane that all such sequences converge to the same

limit. It turns out to be sufficient. Note that the factor 4 in (3.1) has no effect on the limit direction, therefore, we can
drop it and consider sequenaesS” )*w(y). From now on we will drop this factor.

Let V, be the invariant subspace &f (R”) corresponding to the eigenvalpeof AS”. Letwu,, = Proj(u,V,,) be
the component of a 2-vectarfrom the invariant subspadg, of AS. For a set of 2-vectorX, Proj(X,V,,) is the set
of Proj(u,V,) forallu € X.

Lemma 3.1 allows us to prove the following general condition for tangent plane continuity:

Theorem 3.2. The universal surface and hence the corresponding subdivision scheme is tangent plane continuous at
zero, if and only if there is a real positive eigenvalleof AS” and an eigenvector® of M such that the following
conditions hold for alk: from the directional seD.,:

1. the setM(u) contains a single element’;

2. for any 2-vecton € Dy, letuy, = Proj(u, Vay); then the terrmg\(}) in decompositior(3.2) is au® for some
a # 0; in other words, if the order ofiy; is k, thenu,, is in the preimagéAS™ — M1)=*(span(u®)) and is
not zero.

Proof. NecessityThe first condition immediately follows from Lemma 3.1. By definitiorddf the projection,, is
non-zero. In addition, the limit direction is the same for all 2-vectors; this means that in the expansiaft®3dhe
same for alk: € Dy, up to a scaling factor. Given thaﬁa,) = (S — MI)*uy, for an element of ordel, we obtain the
second condition of the lemma.

Sufficiency.The conditions of the lemma guarantee that for any 2-vectdfAS” )*u], converges to the same limit
u°. Lemma 3.1 gives us a uniform estimate for the convergence rate of the directia$6j*u. Consider a ring
RY in U with outer radiu2r and inner radius. The distance to the limit directiofw(y)]+ — u°|| is bounded by
some constank’ on the ringR°. Let k7 be the ring with inner radius/2’/ and outer radius/2/~*. Then onR’ the
distance to the limit direction can be estimated from above€ kg —!, whereC is a constant not depending gror 7,
asR’ is compact. The same estimate applies to the union of fifgs = j ..., thatis, to a punctured neighborhood
of zero. We conclude that the directionwofy) regarded as a function gfhas a limit at 0. O

3.2 Tangent plane continuity of schemes with nondegenerate directional sets

The results presented in this section, while being less general than the results of the previous sections, are of primary
importance both for practical purposes and for understanding the geometry of subdivision surfaces near extraordinary
vertices.
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A geometrically natural assumption on the directionalBgtis thatspan(D,,) has maximal possible dimension,
that is, coincides withl\2(R”). This assumption holds if the universal surface is in a general position — any surface
can be deformed into a general position surface by arbitrarily small perturbation. In three dimensions, this is equivalent
to requiring that the surface is not a cylinder: there is no plane such that the projectiantofthis plane is a curve.
In this case, for any generalized eigenvecat@f AS, we are guaranteed to have 2-vectorp A dap € D, with
non-zero component alorg

Corollary 3.3. Suppose that for a subdivision scheme with a universal gnagpan(D,,) = A?(RP). Then the
subdivision scheme is tangent plane continuous if and only if

1. The subdivision matridST has an eigenvalue of maximal magnitudlg, which is positive and real, and
this eigenvalue has a single cyclic subspalGe of maximal orderk,,; (dominant cyclic subspace); for any
eigenvalueu, such thatu| = M, the maximal order of a cyclic subspace is less than

2. Foranyu € Dy, Proj(u, Jar) # 0.

Proof. If span(D,) = A?(RP) then for any 2-vector, and hence for any invariant subspacg € A?(RP),
Proj(Dy, V,,) # 0. Then the first condition follows from the first condition of Theorem 3.2.

If the eigenvalué\/ has two cyclic subspaces of maximal ordégr, there is a subspad® of 1, with all 2-vectors
of orderk; of dimension at least two. The projectionfof, on that subspace should span a two-dimensional subspace.
Therefore, we can find two 2-vectots andu, from D,, such that; = Proj(u;, W) anduy = Proj(us, W) are
linearly independent. By construction &, aju) + asuf also has ordek,, for any «; andas, unless both are
0. Note that the limit directions o AS™)*u]y and [(AS™)*us]y arews® = [(AS — MI)*u,]  andug® =
[(AS — MI)’“Mug}+ respectively. Asy;u} + aqul has ordetk s, ayus® + azu$® # 0 if one of oy, s is not zero.
Therefore(AS”)*u; and(AS™)*uy have different limit directions. We conclude that the cyclic subspace of maximal
order must be unique.

The second condition of the corollary directly follows from Theorem 3.2. O

There are some interesting cases for which the assumptions of Corollary 3.3 are not satisfied; most notable ex-
ception are piecewise-smooth schemes of the type described by H. Hoppe and others [13]. The assumption is easy to
verify for piecewise-polynomial schemes, as for such schemes Jacobians also can be expressed in polynomial bases,
and the nondegeneracy assumption is reduced to checking independence of vectors of control values for the Jacobians.

The conditions orD,; andAST required by Corollary 3.3 are quite simple. In practice, however, it is more useful
to have explicit conditions on eigenbasis functions rather than on the directiora),sahd on the matrix”, rather
than on the larger matriAS”. There are three parts of Corollary 3.3 that have to be restated: the assumption about
span(D,,), the conditions on the eigenstructure/o$” and the condition on the projection of,, on the dominant
cyclic subspace akS”. Now we consider these parts one by one.

Linear independence of Jacobians. First, we reformulate the assumption of Corollary 3.3 in terms of eigenbasis
functions. Observe that the components of the veatdry € D, are the Jacobiang[g:,, g/ ](y). span(Dy) =
A?(RP), if and only if for any vecton, € A%(RP), there isy such thatu, w(y)) = 0; the latter inequality means that
for any linear combinations of Jacobiaﬁ@j,., g 1(y), there is a poiny such that this linear combination is not zero,
that is, the set of functiong[g’,., g ,](y) is linearly independent.

Eigenstructure of AST. To interpret the condition imposed by Corollary 3.3 on the tangent subdivision matrix, we
use a Lemma relating the eigenstructure of a matrixacting onA?(RP) to the eigenstructure of the matrxacting
onR?. This Lemma is a general algebraic fact and is not specific to subdivision. We use the notation for eigenvalues
and cyclic subspaces éf introduced in Section 1.2 for the subdivision matrix and the order of cyclic subspaces fixed
there. We use an ordering of paits;, n}) corresponding to the order of cyclic subspaces;, n) > (g, nl), if
IXil > [Ax], or [\ = |Ax| andn’ > nj.

LetPr (Ji A JF) be the real cyclic subspace generated by the vetj&g%r/\ efn?, if Ji # Jf,and bye;'. nt /\e;, w1

otherwise (we assume that\; is real). As it is shown in Section 6.3, this is the largest cyclic subspad?mfjf.
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Lemma 3.4. Suppose the cyclic subspaces of a maRtiare numbered following the rules described in Section 1.2.
The dominant cyclic subspach, for the matrix AB acting onA?(RP) exists and corresponds to a real positive
eigenvalue exactly in one of the following cases.

1. Jy =Pr(Ji AJL), if A real, (A, ny) < (A1, ni — 2) forall i > 1. If A\; has more than one cyclic subspace,
thennl < ni — 2.

2. Jy =Pr (J{ A J3), if \; real, has at least two cyclic subspace$,= ni or ny = nj —1, (A, ni) < (A, n3)
forall i > 1. If A\; has more than two cyclic subspace$,< ni.

3. Jy =Pr (Jl1 A Jf), if A1 and \, real, of the same sign and consequently> \,. The eigenvalue; has a
single cyclic subspace of ordet = 0, andn2 < n? if n2 is defined, and\;, nt) < (A2, n?) forall i > 2.

4. Jyy = Pr(J{ AJ3), if (A, X2) are a pair of complex-conjugate eigenvalues, and forialt 2 (\;,n}) <
(A1,n1). If \; has more than one cyclic subspace, thgn> n}.

The conditions on eigenvalues are illustrated in Figure 3. The proof of the lemma is outlined in Section 6.3.

Parametric map. Suppose the universal surface is tangent plane continuous. The limit unit 2-v&esan eigen-

vector of AST. As it is the limit of sequences of decomposable 2-vectors and the set of decomposable 2-vectors is
closed, it can be written ag) A u3, whereu{, ud € RP. If u§ A uJ is an eigenvector of a real eigenvalugandu?

can be chosen in one of the following wayg: anduJ are both eigenvectors) andu$ are linear combinations of a

pair of complex eigenvectors, and, u3 satisfyS™u{ = Auf 4 u3. For a suitable choice of the basis, u” has one

of the formseg, A €5, (A, andX. real), oref, A ef, (Ao andA. complex-conjugate), a1, A ef;.

Definition 3.2. Suppose the universal surface for a subdivision scheme is tangent plane continuous, and has limit
tangent plane defined by A u9. Then we define thgarametric map as

(¥, u), (¢, u3)) : Uy — R?

The second condition of Corollary 3.3 is equivalent to requiring the parametric map to have nonzero Jagpbian
for sufficiently smally. Indeed, for any. = w(y), J(y) = (w(y), u°). If [w(y)]+ — uo asy — 0, thenJ(y) has to
be positive ag — 0. Observing that iProj(w(y), J,,) = 0 thenProj(w(y/2%), J,.) = Proj((AST)*w(y), J,) = 0,
we get the converse.

Now we have all the ingredients required to restate the Corollary 3.3 in a more explicit form.

Theorem 3.5. Suppose the set of Jacobians of all pairs of distinct eigenbasis functions for a subdivision scheme on a
k-regular complex is independent. L&be the subdivision matrix of the scheme with eigenvalues and cyclic subspaces
numbered as described in Section 1.2.

For the subdivision scheme to be tangent plane continuous, it is necessary and sufficient that the subdivision matrix
satisfies the conditions of Lemma 3.4, and for a sufficiently small neighborhood of zero, the parametric map of the
scheme has positive Jacobian. The parametric fiiap—~ R? is given by(flln},flln%fl) in case 1 of Lemma 3.4,

1 1 i 1 2 i 1 2 i
(fy n%,fl n;) in case 2/ f; n%,fl n%) in case 3, and%flni,%fln%) in case 4.

The conditions of the theorem are illustrated in Figure 3.

The theorem is just a restatement of Corollary 3.3 in a different language.

Comparison of Corollary 3.3 and equivalent Theorem 3.5 shows the advantage of using the tangent subdivision
matrix AS for theoretical analysis: otherwise, the geometric properties of subdivision are obscured by the apparent
complexity of the conditions on eigenvalues and generalized eigenvectors.

A necessary condition. Corollary 3.3 can be used to derive a necessary condition on the subdivision matrix for
tangent plane continuity: suppose that the tangent subdivision matrix has two dominanttjjpeksl /2, of order

kar. If there are pointgs, y» € U; such that the projections ef(y;) andw(y2) onVy, = J3, & J3,; have maximal

order, andProj (w(yl),VM)(O) and Proj (w(y1), VM)(O) are linearly independent, then the scheme is not tangent
plane continuous. Similarly to Theorem 3.5, this statement can be expressed as a condition on the eigenbasis functions
and on the subdivision matrix; the condition on the matrix is the same as in Theorem 3.5. To prove this condition, we
do not need to assume Condition A. The details can be found in [26].
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Figure 3: Conditions of Lemma 3.4 illustrated graphically. Each column corresponds to a Jordan subspace. Each cell
in the columns corresponds to a generalized eigenvector (pair of generalized eigenvectors for complex eigenvalues) of
matrix ST'. The generalized eigenvectors generating the parametric map are marked with black squares.

3.3 Sufficient Conditions for Tangent Plane Continuity

In the previous sections we have derived conditions for tangent plane continuity that are geometrically natural, but only
in Theorem 3.3 we have made a step towards conditions that can be explicitly verified for specific subdivision schemes.
Conditions which are simultaneously necessary and sufficient are important for understanding the structure of the class
of tangent plane continuous subdivision schemes. However, for the purposes of verification of tangent plane continuity
of specific schemes it is more useful to have simpler conditions, even if they are less natural mathematically.

In this section we derive sufficient conditions extending those originally proposed by R&if[23]

As a practical criterion, Theorem 3.5 suffers from two problems: first, the assumption of the theorem is unneces-
sarily restrictive; second, it is likely to be difficult to evaluate Jacobian of the parametric map directly. We start with
introducing a new map, called tlsbaracteristic mapwhich is closely related to the parametric map; this map is more
suitable for explicit evaluation. Our definition is based on the definition proposed by Reif.

Characteristic map. Suppose a surface is tangent plane continuousuéne lim,_.o[w(y)]+, Recall that for a
suitable choice of the basi$,, u” has one of the formef;, A 5, (A, and ). real), orej; A ef (A, and\. complex-
conjugate), oeg, A eg,. We consider only the first case, the other two are similar.

Note that for the parametric mapgt2°® we have

(w(55) ") = (AST)w(y),u®) = (wly), AS"u") (35)

Although AS in the basis of wedge producégs,. A ek, does not have Jordan normal form, with proper choice of
ordering it still has block-diagonal form, with each block corresponding to a Jordan subspace. It is easy to show that
u® = ef) A €Sy has ordeny +n§ = kj, with respect to the matrig 5. Therefore, as we can see from (3.2) and (3.3),
asymptoticallyA S*u° behaves as

S S a (& S S a (&
M (kM)ebnb A ed’nd = M (kM> b0 A h‘dO

As we have observed, the 2-vectdi™ = ef A €5, s an eigenvector oAS. Suppose for aly € U, the
Jacobian(w(y),u*™) is not zero. Then for sufficiently large the Jacobian of the parametric map is arbitrarily well
approximated byM* (,* ) (w(y),u**). If the Jacobiar(w(y), ") is positive, this guarantees that the parametric
map has positive Jacobian sufficiently close to zero. One can observe that it is also necessary for this Jacobian to be
nonnegative, otherwise the parametric map will be negative arbitrarily close to zero. These considerations lead us to
the following definition:

Definition 3.3. The characteristic map ® : U; — R? is defined for a pair of cyclic subspacey, JS of the
subdivision matrix as fy,, fy) if Ji = Jg, A4 is real, (fg, f50) it J§ # JG, A, Ac are real, and(Rf5, S frp) if
Ao = Ao, b=1d.

2Reif’s conditions guarante€!-continuity, not just tangent plane continuity; however, as we will see in Section 4 the difference between
conditions for tangent plane continuity a6t -continuity is small.

17



Three types of characteristic maps are shown in Figure 4.
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Figure 4: Three types of characteristic maps: control points after 4 subdivision steps are shown. a. Two real eigenval-
ues. b. A pair of complex-conjugate eigenvalues. c. Single eigenvalue with Jordan block of size 2.

Although a characteristic map is defined for many pairs of cyclic subspaces, only the map corresponding to the
pair of cyclic subspace of the parametric map is of interest. The characteristic map has a remarkable property, which
makes it particularly useful for proving tangent plane continuity @hecontinuity of subdivision schemes:

The characteristic mag for any pair of cyclic subspaces has self-similar Jacobian:

J[@](y/2) = J[®](y)

This property can be easily proved using the scaling relation. Therefore, it is sufficient to verify that the character-
istic map is regular on a suitably chosen annular compact set. Reif’s original characteristic map is defined on such set.
In our context it is more natural to consider the map defined on the whole neighbdrhood

Note that if the parametric map corresponds to a pair of distinct cyclic subspaces of order 0, to a cyclic subspace

of a pair of complex-conjugate eigenvalues of order 0, or a single cyclic subspace of a real eigenvalue of order 1, the
characteristic map coincides with the parametric map.

Sufficient condition. Now we are ready to formulate the sufficient condition. The idea of the condition is to ensure
that the parametric map corresponds to a given pair of cyclic subspac&earaf then to require the corresponding
characteristic map to have positive Jacobian.

Suppose that for a given pair of cyclic subspadgs and JS the characteristic magp has non-zero Jacobian
everywhere. This guarantees that the projection of the any 2-vectByion Pr (J¢ A J) has maximal possible
orderkys, whereM = A\ \. andky = ng + ng if Jg # J$ and2nj — 2 otherwise.

By Theorem 3.2, it is sufficient for tangent plane continuity to ensure foragyD,, that if |\;A;| > M, then
Proj(u, Ji A JF) = 0 and if [\;\x| = M, then the order oProj(u, Ji A JF) is less tharky, for (J7, JF) # (Jg, J§).

The first part of this requirement is also necessary and is equivalefifffp, ] = 0if [\id\| > M. For the
second part it is sufficient to haeroj(u, €%, A ej;) = 0 for which the order ok’ A e, is no less tharkyy, i.e.,
T4+t > kaif (4,7) # (k,0),orr +t—12> kp if r # ¢t and(i, j) = (k,1). However, this is not necessary: a linear
combination of vectors of ordér,, or higher may have order less thiagy; projections of 2-vectors fron,, can be
such linear combinations.

Our observations lead to the following condition:

Theorem 3.6. For a subdivision scheme to be tangent plane continuous oh-tegular comple, it is sufficient that
there is a basisbj-r, in which S has Jordan normal form, such that there is a pair of cyclic subspdges; in this
basis, possibly coinciding, with, \. positive real, and for which the following conditions are satisfied:

1. For any pair of eigenbasis functions corresponding to eigenvaljeand Ay such that|\;\x| > A A the
JacobianJ[f,, f#], is identically zero.

2. Letord(b?,, bE) =r+tif J: # JF, ord(b%,., bE)=r+t—1if Ji = JF, andr # t. Letord(b%,, b%,) = 0. For
any pair of eigenbasis functior}fg'r and f; corresponding to eigenvalues and \;, such that\;\x| = Ao\
the Jacobian/ [}, ff], is identically zero ibrd (b, bj;) > ord(bg,., b5, ), and Ji" # Jg, or ord(b%,., bf,) >

bng o Ydng iro
a a .
ord(bfl,e b a_;) Otherwise.
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3. The Jacobian of the characteristic mapAff, J$ has constant sign everywhere & except zero.

Condition A immediately follows from regularity of the characteristic map, and the only assumptions of this
condition areC''-continuity on the regular complex and the scaling relation.

Unlike Reif's condition, this is a condition for tangent plane continuity, rather ti&tontinuity. We discuss
C'-continuity in the next section. Our condition covers a number of cases where Reif’s condition does not apply: the
cyclic subspaces defining the characteristic map need not have order zero; the eigenvalues may be complex conjugate;
the cyclic subspaces may coincide; the eigenvalues of the subspaces defining the characteristic map need not be
subdominant.

Another condition, with stronger assumptions than the one above, but easier to check, can be obtained directly
from Theorem 3.5 by relaxing the nondegeneracy assumptions; it is sufficient to assume that only the characteristic
map corresponding to the dominant cyclic subspace%f is nondegenerate.

4  Criteria for C'! and C*-continuity

Once tangent plane continuity is established, the only additional condition that is requitg-éontinuity is injec-
tivity and C*-continuity of the projection of the universal surface into the tangent plane.

This criterion forC*-continuity can be obtained by reinterpreting the injectivity condition in terms of the eigen-
basis functions. Let be the tangent plané?. be the projectio®R3 — 7. Recall thatP, o ) is just the parametric
map ¥ defined in Section 3.1. Suppose that arbitrarily close to zero there are poipts€ Ui, y1,y2 # 0, such
that W(y;) = Y(y2). If ¥(y1) # ¥(y=2), the projectionP; restricted to the tangent plane is not injective on any
neighborhood of zero.

To obtain conditions fo€*-continuity we only have to note that in this case the parameterization of the universal
surface over the tangent plane can be writtenyas? —! whereV is the parametric map. Note thé&tcan be non-
injective, but conditions of Theorem 4.1 guarantee that? —! is well-defined. We can replace the real eigenbasis
functions which are components©f with corresponding complex eigenbasis functions. Then we have the following
criterion for C'*-continuity:

Theorem 4.1. A tangent plane continuous scheme with parametric @ap C!-continuous if and only if there is a
neighborhood of zerd/, such that for anw;,y2 € U, y1,y2 # 0 for which¥(y;) = ¥(y2), and for any eigen-
basis functionf, the valuesf(y;) and f(y2) coincide. A subdivision scheme @&-continuous if and only if the
reparameterized eigenbasis functioffs(¥~'(¢)) : ¥(U) — C are C*k-continuous oriJ.

It is important to note that the theorem does not imply thas injective in any neighborhood of zero. ¥ is
injective, than¥(y,) # ¥(y=2) for anyy; andy, and the first condition of the theorem is trivially satisfied. For
practically useful schemes is likely to be injective; but it is easy to construct examples when this is not the case. It
is important to note that the artefacts that make surfaces with noninjective parametric maps impractical (for example,
almost inevitable global self-intersections) do not preclude them from being la@¢&lontinuous.

The first part of this theorem in combination with Theorem 3.6 gives a sufficient conditiof faontinuity,
which extend Reif’s condition; it applies whenever Theorem 3.6 applies.

It is important to note that Reif’s condition goes one step further and asserts that it is sufficient to verify regularity
and injectivity of the characteristic map on an annular region. It is clear that it is sufficient to check regularity on such
region due to the self-similarity of the Jacobian of the characteristic map. It is less obvious that it is sufficient to verify
that the map is injective only on such region. Reif’s argument also applies in our case. It is even possible to make
much stronger statement: it is sufficient to verify only that the index of the characteristic map is 1, as it is described
in [26] and in a separate paper [27].

Theorem 4.1 can be made much more explicit if the parametric map coincides with the characteristic map:

Condition C. The parametric map corresponds to a pair of cyclic subspaces of order 0 with real eigenvalues, or to the
cyclic subspaces of a pair of complex eigenvalues of order 0, or a single cyclic subspace of order 2. In other words,
the sum of the pair of cyclic subspaces defining the parametric map has dimension 2.

Additional motivation for considering this case is that only in this c@$econtinuity of the subdivision scheme
can bestable with respect to perturbations of coefficients of the subdivision mkti$xpossible to show under certain
assumptions that unless Condition C is satisfied, there is an arbitrary small perturbation of the entries of the subdivision
matrix such that the resulting matrix violates the necessary conditions for tangent plane continuity.
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Recall that there are three possible types of characteristic maps (Figure 4). The complex eigenbasis functions
reparameterized by the parametric map(¢) = f7,.(¥~'(¢)) satisfy more general scaling relations of the form

i (T€) = Xif (&) + f1,_1(€), forr =1 fio(T€) = Xiffo(€)

whereT is a nondegenerate linear transformation of the plane, of one of three normal forms: diagonal matrix with
real eigenvalues,, \., rotation matrix corresponding to a pair of complex eigenvaluesp(iy), A exp(—ig) or a
Jordan block/, () for a real\. We assume thdf\,|, |\.|, |A\] < 1 and); # 0. Note that any linear nondegenerate
transformation of the plane can be reduced to one of these forms, so our list of transformations is exhaustive for scaling
relations with lineaff".

Using the results about*-continuity of functions satisfying scaling relations (Section 6.4), we can formulate a
general criterion o€*-continuity of subdivision schemes.

Before stating the theorem, we need to define three special types of polynomials. Each type of polynomials
corresponds to a particular type of characteristic map described above.

The first two types generalize the idea of homogeneous polynomials. Their definitions differ only slightly from
the standard definitions of quasihomogeneous polynomials (see for example, [1]);

1. ForT being the diagonal matrix with real eigenvalugs )., we use the classes of polynomi®sp, ¢). Let
N(p, q) be the set of all pairs of non-negative integ@rg) such that\} \J = \P\¢ for a fixed pair(p, ¢). Then
P(p, q) is defined as

P(p.q) = { D autiél | (i.7) e Np.g), ayy € CJ
4,3

Note that the se¥ (p, ¢) depends op, ¢ and the ratidn A,/ In \.. For example, if this ratio i8/3, thenP (4, 3)
is spanned by the monomial§, £1¢3, £2€8, €12,

We also define an integer constgfy,, for all \; satisfying|\;| > |\ |* as

=min{j|3: I+j <k, and|]N,N| < [\ }

)
Imin

Note that if|\,| = |\.| and|);| > |\, j¢ ... = 0. The meaning of this constant is explained in Section 6.4.
2. If T" has a pair of complex conjugate eigenvalugs A\. = A, We defineN(p, q) as the set of all pairs of

integers(i, j) such that\: \,” = X2\, for a fixed pair(p, ¢). In this case we define the set of polynomials
P(p,q) = { Y i’ | (i,4) € N(p,q), a; € C}
i.J
3. If T'is a Jordan block of size 2 with real eigenvalueve use polynomials

m—1
Fp(t)=— [[ (@ =) form > 0; Fy(t) =1 (4.1)
=0

Theorem 4.2. Suppose that a subdivision schemé&#scontinuous on regular complexes, tangent plane continuous at
extraordinary points of a fixed valence, and the parametric map of the scheme coincides with the characterigtic map
The subdivision scheme(s'-continuous on thé-regular complex if and only i has Jacobian of constant sign, for
anyy; andy, for whichW(y;) = ¥(y2), and for any eigenbasis functighthe valuesf(y;) and f(y2) coincide. The
subdivision scheme &*-continuous if in addition, fof);| > |\.|*, any nontrivial set of complex eigenbasis functions

;fr(cb—l(g)) = f:.(§), r = 1..n; corresponding to the eigenvalue satisfies one of the following conditions:

1. The characteristic map corresponds to a pair of different cyclic subspaces with real eigenvaluesand
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@ X\ = )\g)\Z“f"i" for some nonnegative ¢ ,p + ¢ < k — j',;,, » + ¢ # 0 and 85" f;n &) € P(p,q),
g fi. (€)= 0form < n.
(b) OR&J™ fi (€) = 0 for all j.
2. The characteristic map corresponds to a pair of complex conjugate eigenvalugs, \; = A2\, ? for some
p,q,p+q<k, fJ’n; () € P(p,q), and f;,, (&) = 0form < n’.

3. The characteristic map corresponds to a single cyclic subspace with real eigemvalie = AP for some
p<kand

)\agl
&

forr > n% — p, wherel = max(0,n; — p). Forr <nj —p, f;.(§) = 0.

&

r—l1
;r(g) = Zcrflfm )\mme(
i=0 @

)

The theorem immediately follows from Theorem 4.1 combined with the criteri@e€ontinuity of functions
satisfying scaling relations stated in Section 6.4.

An important special case of Theorem 4.2 occurs whes= A.; in this case the eigenvalues are necessarily real
and the criterion becomes

Corollary 4.3. If a subdivision scheme satisfies conditions of Theorem 4.2ar€e \. = ), than the scheme &* if
and only if any nonzero complex eigenbasis funcﬁ;qlrg corresponding to an eigenvalug > \* is a homogeneous
J

polynomial of degred, \; = A% and for allr < n} f7. = 0.

Another important special case are the conditiongfbicontinuity:

Corollary 4.4. If for a tangent plane continuous subdivision scheme the characteristicimapincides with the
parametric map, it i<>t-continuous if and only if for any;, y> € Uy, y1,y2 # 0, such that¥ (y;) = ¥(y,), for any
eigenbasis functiorf(y,) = f(y2) and the Jacobian o¥ has constant sign.

The C*-continuity conditions for the case when the characteristic mayis f5,) with ., A. real can be made
more explicit, if we integrat@éiﬁmfjm; see Section 6.4.

5 Conclusion

We have presented a number of conditions for tangent plane continuitg aedntinuity of stationary subdivision,
unifying and extending most of the known conditions. Considering subdivision surfaces locally as images of the
universal maps allowed us to separate the geometric and algebraic aspects of the problem. In addition, we avoid
considering the degenerate configurations of control points, corresponding to special directions of projection. Our
approach makes most of the arguments more intuitive compared with the more common purely analytical approach.

A number of questions remained unanswered. Ideally, tangent plane continuity'acohtinuity conditions
should be formulated purely in terms of the coefficients of subdivision schemes. Our conditions still require consid-
ering limit functions of subdivision. While it is unlikely that explicit conditions on coefficients can be established in
general, it might be possible to find such conditions in special cases.

C*-continuity criteria suggest a simple way of constructing subdivision schemes with higher degree of smoothness:
we just have to ensure that the magnitude of certain the eigenvalues is sufficiently smi&subdivision scheme
constructed using this approach was proposed by Prautzsch and Umlauf [21]; however, such schemes generate surfaces
that are flat at extraordinary vertices (have zero curvature). At the same time degree bounds were derived for piecewise-
polynomial schemes ([23, 20]), which indicate that schemes that generate non-flat surfaces of higher-order continuity
are likely to have large supports. Still, construction of such schemes is of some interest.

Another important question that we have mentioned is stability with respect to small perturbations of coefficients.

From the practical point of view, it is important to develop a systematic way of applying criteria of the type derived
in this paper and previously derived by other authors to specific subdivision schemes and families of subdivision
schemes. We will address this issue in a separate paper [27].
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One of the advantages of the approach developed in this paper is that it is possible to extend it to subdivision
on higher-dimensional complexes; for example, we may consider complexes with cubic cells, which are refined by
splitting each cell into eight subcells. Instead of the universal surface we would consider a three-dimensional manifold,
instead of 2-vectors, 3-vectors, etc. In this way, our approach can be potentially extended to schemes of the type
proposed in [16].
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6 Proofs

In this section we present several proofs that were postponed in previous sections.

6.1 Proof of Proposition 1.2

Necessity of the condition of the proposition is obvious; we prove sufficiency. Sughosenjective onf (D). We
are going to show that the inverse Bf| s p) is regular as a function on the tangent plane in a neighborho@dof

By assumption, there is a parameterizatioof the surface defined on a neighborhood of zero in the plane, which
is regular away from zero, and the lintitn,_¢[01p(y) A 92p(y)]+ = o exists. Choose the basisRY in such a
way thatup = e; A e3. As any nondegenerate projections into a plane differ by a nondegenerate affine transformation
which does not affect injectivity, we can assume tRata) = (a',a?) for anya € RP, if a = Y, a’e;. Letp'(y) be
thei-th coordinate function op. Let ®(y) = (p*(y), p*(y)). Note that the components 6fp(y) A dap(y) are the
Jacobians of the pairs of coordinate functiofis’, p?]. As lim,_.o[01p(y) A d2p(y)]+ = e1 A ez, for a sufficiently
small neighborhood of zer@ (91p(y) A 92p(y), e1 A e2) > 0; but this component abyp(y) A dap(y) is exactly the
Jacobian ofb. We conclude tha® is regular onJ away from zero.

Therefore, for any point € U, z # 0, there is a neighborhodd, of x such that® is invertible.

Also note thafd: p(y) Adzp(y)]+ = 01p(y) AO2p(y)/ ||O1p(y) A Dop(y)||. Writing the components of the equation
lim, 0 [01p(y) A 2p(y)]+ = e1 A ez explicitly, we obtain

_ J[®]
1 _ 6.1
v 01p(y) A D2p(w)] 1 -

m
y=0 ||91p(y) A Dap(y)|
combining (6.1) with (6.2) we obtain
. Jp'p]
Jim, J[®]

Let P.|¢(py = 7. As® = P op, then onl/, we can writer = po®~'. Observe thalh 7Adym = J[®] 91 pAdap.
Let M ; be the Jacobi matrix cb. . .
Note that the we can write the vect[ei%, Jp 1|7 a5

=0 for (i,k) # (1,2)

T3]
1[I p' } I { op' ]
T[] [ T | =M | o (©:3)

which is exactly the gradien®,; =’ 9,7¢]T of thei-th component ofr. As we have observed, each component of the
left-hand side of (6.3) converges to zero fo£ 1,2. Fori = 1,2 the components aof are just linear functions away
from zero and their gradients have limjts 0] and|0, 1] at zero.
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If the limit of a derivative exists at zero, the derivative itself exists at zero and is continuous. We concludiesthat
a regular parameterization of the surface.

6.2 Proof of Lemma 3.1
(2)

Using (3.2) and (3.3) we can write an expression46p in terms of vectors,,” (realp) andv!?

vé(i) (complexy),

1wy
q=0...k,. Definer,(s,q) = |u|*~*=+4 ( 1 s_ ; ) Then
ki"
A’y = Z Zru(s,q)vftq)
realu>0 g=0
kl‘
+ Z Z(fl)‘q*kﬁrqr#(s, q)vftq) (6.4)
realpu<0 g=0

K,
+ 3 Y s )W cos((s + g — k)xp) — v’ sin((s + g — k)xu))

complexu g=0

The set of vectorsfﬁ), vﬁﬂ), véi’}, w € M(v), is linearly independent. Therefore, we can construct a basis such that
this set of vectors is a part of the basis. In a finite-dimensional space any basis is a Riesz basis, in particular, there is a
constantB such that

ku
v zB(Z S (o))

realy g=0

(6.5)

k,u,
+ 30 S s o) (@] cos((s + g — k)xu)| + [[ol2]]sin((s + g — k)x,)])

complexy g=0

Consider the direction ofi*v, that is,A*v/||A%||. As all components of the vector are independent, this vector
has a limit if and only if each component has a limit.
Suppose: € M(v) is complex. Define

v(s) = vﬁ) COS SXp — vﬁ) sin sx,,

Intuitively it is clear that this sequence of vectors does not have a limit direction; there are two seqyenges
such thaw(s}.) andv(s?) converge to linearly independent limits /as— cc. For irrationaly,, /2, this follows from
the well-known fact (see for example, Hardy [12]) that for artye [0, 2] and arbitrary large, there is ans’ such
that [sx, mod 2r — t| < e. If x,,/27 is rational, then the function is periodic, and unless it is constant, which is
impossible, we can choose two constant subsequences of linearly independent vectors.

Lets;, s7 are two sequences such thét; ) converges te' andv(s?) converges te? ask — oo, with ¢! andc?
linearly independent.

Becausq. € M(v), k, = ks and the ratio,./ (s, q) /7, (s, kar) ass — oo for all 4 andg. From (6.5) we have

o] = B o kan) 1 - ) ©9)
for arbitrary smalle and for sufficiently larget. Similar statement is true forz. Therefore, all elements of the

sequencel®v/||A*v|| are well-defined for sufficiently large.
Also from definition of A/ andk,, it follows that

|A®v|| < Kras(s, kar) for some constank’. (6.7)
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Observe that (s)r,, (s, kar)/||A%v|| is a linearly independent component in the decompositiotrof/ || A*v||. To
show that4®v /|| A*v|| does not have a limit it is sufficient to show the)r,, (s, k) /|| A*v|| does not have a limit.
For sufficiently largek and arbitrarily smalk

HU(S%)TM(&%ICAI)H iHcln

Ja o

The direction of the vectors in the sequente} ), (s}, kar) /|| A% v|| converges ta' /||c!||; the direction of the
vectors in the sequenags?)r, (s7, kar)/|| A% v|| converges t@?/||c?||. By linear independence ef andc? these
limits do not coincide.

Therefore, the component does not have a limi¢ as co and we conclude that the sequent® does not have
a limit direction.

Similar argument can be used to show that {hat M cannot be negative.

Thus, if the sequence of vectors has a limit direction, the eigenvalu®:n are all positive and real. But the
magnitudes of all eigenvaluesi(v) are equal, therefore, it may contain only a single element.

Convergence rate can be easily estimated observing that the ratio of the second slowest decreasing term to the
dominant term decreases at least at the @4te!).

6.3 Proof of Lemma 3.4

Complex Jordan structure of AB. Itis straightforward to show that any eigenvajuef A B is a product of eigen-
values); )\, of B (¢ andk may coincide.) Supposk has cyclic subspaceg' and.JF corresponding to eigenvalugs
and\, of ordersn; andn; respectively. Let’, ,ej; be the vectors of the Jordan basisiwith our usual conventions.

Two cases are possmld“ andJl are different subspaces, or they coincide. In the first case the cyclic subspaces
Ji andJf" generate a subspacﬁ}\i/\ JF of A2(RP) of dimension(n} + 1)(nf + 1). In the second case, we obtain a
subspace of dimensio@(n;ﬁ +1)/2. Each subspacé;f ANJFis composed of several cyclic subspaces. It can be easily
shown (Figure 5) that the maximal order of an eIemenI;o,f\ JFis nj + n¥. Therefore, the largest cyclic subspace
Pr (Ji A JF) has ordem’ + nj. Itis easy to show that other cycllc subspaces have order strictly lessfhem;
(in fact, the orders of other cyclic subspc';\cesnagreL ny—2m),m=1....For J;f A J]Zi the order of the largest cyclic
subspace i8n; — 2;if nj = 0, J; A Jj is trivial.

00 =—0] =— *=— "+ = == * <(n-1=0n

NN NN 0J‘<0T’€< T ‘f\”’?;f\*a{:

10 =~—11 =< " : s =~—1n-1

NN TEETEEN A N &

n-10<— - . T«n‘, lTn 1411 -1,m, " 2,}‘;1 20
H,0=—n) I=— + =— + =« =<— =yl pg-1=n,n n-1n

Figure 5: Left: the subspace of?(R?) generated by two cyclic subspacesRf Ji, JF. The pairs of numbers
correspond to the basis vect@t;$ A el; arrows indicate the components that are generated by each vector after one
application ofAB — \; A\ I; afterm steps, if we start in the bottom right corner, we only have components above the
line given by equatiom + ¢t < n§ + n¥ —m. Right: Subspace of?(R?) generated by a single cyclic subspalje

The pairs of numbers correspond to the basis vectors.

Conditions for existence of a single dominant cyclic subspace dfB. Recall that we call a cyclic subspade,
of AB dominant, if it corresponds to a real positive eigenvalde and for any other cyclic subspace of order
corresponding to the eigenvalpe(u, k) < (M, kyr) wherek), is the order offy,.
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We have observed that any eigenvalue\d? has the form\; )\, or \?; and the orders of cyclic subspaces are of
the formn! +nf —2m and2n} — 2 —4m, m = 0.... Therefore, we need to assert thaf, kns) > (A Ax, ) + 1))
and (M, knr) > (A7, 2n} — 2) for all other pairs of cyclic subspaces Bfdifferent from the pair defining tdy;.

We have to consider only the subspaE‘eiJJ’-' A Jlk); other cyclic subspaces afB have smaller orders. With our
ordering of cyclic subspace¥ can be eitheA? or \; X,. The options for the dominant subspace BrgJ{ A J1),
Pr (J{ A J3), Pr(J} A J?) (real eigenvalues), ariélr (J{ A J) (complex-conjugate eigenvalues).

The first two cases requirg, real, the third case requires and )\, real, and the last case requirgsand \, to
be complex conjugate with; A\, real positive. These four possible cases correspond to the cases of Lemma 3.4.

1. Ju = Pr (J] A J7); this case implies that/ = A]. Therefore)\, is real. In addition, we need for ariy;,
(XiXj, nh +nf) < (A1,2n] —2) and(X;, 2n] —2) < (A, 2n] —2). As|\y| > |A;| foranyi > 1, andn} > n}
forany;j > 1, itis sufficient to requires] > nl + 2, and(\1,ni) > (A, né +2) foralli > 1.

2. Jy =Pr (J{ AJ3), M = A} and), are real. Similarly, the additional conditions arp < n3 + 2, nj > nj if
ni is defined, and\;,n?) > (\;,n}) foralli > 1.

3. Ju = Pr(J{ AJE), M = A\, and); and ), both are complex and have opposite phase. Suppose that
|A1] # [A2]; then)y = \; and A = A, are also eigenvalues @ distinct fromA; and .. Then eigenvalue
M2 = A\ \x has a cyclic subspader (Ji A JF) distinct fromPr (J{ A J7) and of the same size, because
n} = n} andn¥ = n2. Therefore, there is no dominant subspace unlgss- \,. Suppose\; = \,. For
Pr (J{ A J?) to be dominant, we need, < n} if n} is defined and\;, ni) < (A1, n}) forall i > 2.

4. If Ay and )\, are real, forM to be positive, they have to be of the same sign. Then necespariily |\2|. To
guarantee that\; Ao, n1 +n?) > (A g, ni +nb) we neechl < n? —2,n2 < n? and(\;,n}) < (Mg, n?2 — 1)
for all 7.

6.4 Scaling relations

In this section we outline the proofs of the criteria &F-continuity of functions satisfying scaling relations. Impor-
tance of scaling relations for subdivision was recognized by Warren [25]. Some of the properties of quasihomogeneous
functions that are discussed here, as well as the use of Newton diagrams for establishing these properties, are well-
known in the singularity theory literature and first were used, to the best of our knowledge, in the work of Kushnirenko
[14].

We consider the scaling relation of the form

H(TE) = Tnia(N) £(£) (6.8)

whereT is a nondegenerate linear transformatio®df, f is a mapR? — C"*1, J,.1()\) is a Jordan block with
eigenvalue\’, possibly complex.

The following Lemma proved in [26] is the basis of our derivations. This lemma extends a similar lemma of
Warren [25].

Lemma 6.1. Supposef (€) = [fn, fa_1---fo]* : R? — C"*!is a continuous function defined dn\ {0}, where
D is a compact domain ilR? which contains the origin as an internal point and satis{i@s)

1. 1f | N| < [Amin|®, where,,;,, is the eigenvalue ¢f with minimal absolute value, then

@l _
=0 "

2. If X =1, theny is continuous at 0 if and only if,, = const and f,,, = 0 for m < n.

3. If|N| > 1,and) # 1, thenf are continuous if and only if = 0.
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Figure 6: The Newton diagrams. (&)| > |X\2|¥, jmin = 0; The functionf,,, has to be a polynomial. ()'| > |2,
Jmin # 0; derivativedy™" f,,, has to be a polynomial. (¢)\'| < |\2|; All derivatives up to ordek exist.

Two real eigenvalues. We start with the case whef can be reduced to the normal form djag, A2). This case
includes the case when = )., and the matrix has a single real eigenvalue but with two cyclic subspaces. We assume
without the loss of generality thah;| > |X2|. We say that a system of functiorfs, (&) satisfies(A;, A2)-scaling
relation for)\’ if it satisfies (6.8) withl" = diag(\1, A2).

The derivatives of functions satisfying a scaling relation do not satisfy a scaling relation themselves, but their
scaled versions do. If a system@f'-continuous functiongy (¢), ... f..,(¢) satisfies thé A, A2)-scaling relation for
X then the derivativé: 3 f,,,(€), i +j < k, exists at 0 and is continuous if and only if one of the following conditions
is met:

1N < [N

2. N = XX, 010] £, (€) = const and)i 9] f,,, (€) = 0 for all m, < n.

3. 819) fm(€) = 0 for all m,

The functionsf,,, (¢) areC*-continuous if all derivatives
0103 fn (€)

with ¢ + j < k exist and are continuous. The derivat&’pﬁgfm can be associated with the integer pdihtj) in the

plane. Such representation is used forlevton diagramsef quasihomogeneous polynomials (see for example [1]).

We are interested in the existence and continuity of the derivatives which are represented by integer points inside the
triangle bounded by = 0, y = 0, z + y = k (Figure 6).

The derivativesai’ag' fm are guaranteed to exist at O |i AAJ < 1. Taking logarithms of both sides of this
172

inequality, we can see that for all integer points below the 1{né) with equationz In || + y1n|A2| = In|)/|, the
derivatives are known to exist. For the points between the lipé$ andx + y = k, the derivatives have to be either
0 or constants to exist and be continuous. For those that are constants, additional conditio A} have to be
satisfied; only the derivatives ¢f, can be constant; derivatives ff, for m < n are identically zero.

Note that if a derivativé; 9} f,,, is 0 or constant, all derivatives to the right and upward fonj) are equal to zero
everywhere. Suppos&’| > |\5|; this means that\’) intersects the axis below or at the poir(0, k). In this case let
Jmin b€ the minimal integer value gffor which there is an integer poifi, j.,..,,) between(\') andz + y = k. All
derivatives represented by integer points inside the area delimitedb, [(\'), x + y = k, ¥y = jmin are 0 (shaded
area in Figure 6).

From these considerations we obtain the following lemma:

Lemma 6.2. All functionsf,,(¢£), m = 0...n are C*-continuous at 0 if and only if one of the following conditions
holds

1|V < Aok,

2. X = XoALTI " for Somep, ¢, p+ 4 < K — Jumin, O [(€) € P(p, ), anddy f,,(€) = 0for m < n.
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3. & £ (€) = 0 for all m.

The condition orﬁg"”i” fm does not give the explicit form for the functiorfs, unlessj,,;, = 0. Itis possible to
find a more explicit expression fgf,, that areC* and satisfy scaling relation fo¥' (see [26]). If\' = APALT7min for
some nonnegative, ¢, p + ¢ < k — jmin then

] Jmin—1
Fal€) =Emmp&r, &)+ D AT (6)E
s=0
Jmin—1
fn©) = D A (608
s=0

wheref? areC*-continuous and satisfy thg -scaling relation foo\’l’)\g”"”"’s.

The case off” being a rotation matrix with complex-conjugate eigenvalues is similar; instead of derivdtivés
we used = J; — i, andd = 0, + i0, to obtain the conditions on the functiorfs,. The functionsf,,(¢) are
C*-continuous if and only if one of the following conditions is met:

LA <A
2. X = XX for somep, q, £.(€) € P(p,q), p + q < k, andf,,,(¢&) = 0 for m < n.
3. fm(&) = 0for all m.

k

Jordan block of size 2. Finally, we consider the case wh&h= J>(\). In this case it is convenient to consider
the whole set of derivatives of the functions, together. Differentiated scaling relations for alland all9;d; for
i+ j = k can be written in the matrix form as

B  falT9) NI fal®)
B fn—1(T€) NI T fn-1(§)

. L = . 69)
B Jo(Te) X1 fr(€)

where f,,, (€) = [05 frn (£), 020572 fn(€), ... 0% £ (€)]T and B is a triangular matrix with\* on the diagonal. The
matrix diag B, . .. B) is clearly invertible. LetB = diag B, ... B)~'J whereJ is the matrix on the left in (6.9), let
By be its Jordan formP the matrix such thaPBP~! = By, and letf be the vectoff,, f,_1 ... fo]*; then (6.9)
can be written as

Pf(T¢) =BnPf(E)
Note thatB is triangular with\’/A\* on the diagonal. Therefore, the vectBif can be separated into several
sets of functions satisfying scaling relations féy \*. It follows from Lemma 6.1 that if\’/A\*| > 1 the functions
fm (&) have to be polynomials of degree no higher tlianlt is easy to show that all such polynomials have to be
homogeneous, and if one of them is nonzeYo= ) for somej < k. Observe that we can formally write for a
homogeneous polynomial of degrge

J
Fnl1,62) = <2 Fn(3 /62)

Then polynomiald’,, have to satisfy scaling relations

Fn(t+1) = Fpn(t) 4+ Fu_1(t); Fo(t)=C (6.10)

It is possible to show that all solutions of these recurrences are given by fun@ﬁi@cm_iﬂ(t), m =
0...n,with F,,(t) given by (4.1).
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Lemma 6.3. All functionsf,,, (£), m = 0....n in a set satisfying scaling relations with = J»(\) are C*-continuous
if and only if one of the following conditions holds:

L IN| < |AF].
2. N =XMforj<kandform>n—j

&
)\mi

AL

s

m—1
fm(g) = Z C’m—l—i )
1=0

whereF,, (t) = - H?igl(x — i) form >0, Fy(t) = 1 andl = max(0,n — j). Form < n — j fn(§) = 0.
3. Al f,,(&) = 0.
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