
Live Paint:
Painting with Procedural Multiscale Textures

Ken Perlin
Media Research Laboratory

Courant Institute of Mathematical Sciences – New York University

Luiz Velho
IMPA – Instituto de Matemática Pura e Aplicada
Abstract

We present actively procedural multiresolution paint textures. Tex-
ture elements may be linearly combined to create complex com-
posite textures that continue to refine themselves when viewed at
successively greater magnification. Actively procedural textures
constitute a powerful drawing tool that can be used in a multires-
olution paint system. They provide a mechanism to generate an
infinite amount of detail with a simple and compact representation.
We give several examples of procedural textures and show how to
create different painting effects with them.

1 Introduction

The introduction of multiresolution paint systems is a recent de-
velopment in the field of computer graphics, [10], [1], [5], [12].
In this type of system, the user can view and modify an image at
any desired resolution. This is possible because the internal image
representation supports multiple levels of detail.

In multiresolution paint systems it is possible to make modifica-
tions at different image magnifications. The user can quickly make
coarse changes over large areas of the picture, as well as fine and
precise changes over small areas. Although this capability provides
a great degree of control over the painting process, it is the painting
tool that ultimately determines what goes into the picture. For this
reason, it is necessary to develop tools that can take full advantage
of multiresolution paint systems.

Standard painting tools are designed to operate at fixed resolu-
tion and, therefore, can generate only a certain amount of image
detail, commensurate with resolution. When the user wants to cre-
ate fine detail over a large area of the image, s/he must paint at a
high magnification level. This task is time consuming, even if a
multiresolution paint system is used.

The power of multiresolution paint systems is enhancedif paint-
ing tools are able to exploit the underlying multiresolution image

1Courant Institute of Mathematical Sciences, New York University, 719 Broadway
12th Floor, New York, NY, 10003. perlin@cs.nyu.edu

2IMPA – Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110,
Rio de Janeiro, RJ, Brazil, 22460-320. lvelho@visgraf.impa.br
representation by operating at multiple levels of detail. In this way,
when the user wants to paint a complex pattern over a large area
of the picture, s/he can perform the operation at a coarse level very
quickly and still create as much detail as desired.

In this paper, we develop a framework for the design and im-
plementation of multiresolution painting tools. This framework is
based on general procedural textures defined over both spatial and
scale domains. These procedures are executed at multiple resolution
levels in order to add texture details to the picture. Basic texture
elements can be linearly combined to create complex composite
textured brushes. This framework fits naturally into the context of
multiresolution paint systems.

The structure of this paper is as follows: Section 2 reviews
the principles of multiresolution paint systems; Section 3 gives
a general overview of multiresolution textures; Section 4 shows
where texture is invoked in the system; Section 5 explains how the
texture refinement method works; Section 6 illustrates the system
in action with examples and pretty pictures; Section 7 discusses the
use of images in our framework; and Section 8 concludes with final
remarks and a discussion of future work.

2 Multiresolution Paint Systems

A multiresolution paint system allows the user to view and modify
an image at multiple resolution levels.

The painting process consists of a cycle in which the following
tasks are repeatedly executed:

modify image at level x
"

move up or down a level

For this, the system must support:

� Multiresolution Image Representation;

� Painting and Compositing at Multiple Levels.

We can classify multiresolution paint systems with respect to
the way they implement the image data structure and the operations
mentioned above.

2.1 Multiresolution Image Representations

There are two basic ways to represent an image at multiple resolu-
tions: with a lowpass pyramid or with a bandpass pyramid.

Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.

A lowpass pyramid consists of multiple copies of the image at
different resolutions, [11]. In Figure 1(a) we show an example of a
lowpass pyramid with 4 levels.

A bandpass pyramid consists of a coarse resolution version
of the image, together with a sequence of image details that are
required to produce finer resolution versions of the image from
coarse versions, [2]. The bandpass pyramid can be constructed
by taking differences between consecutive levels of the lowpass
pyramid. In Figure 1(b) we show an example of a bandpasspyramid
with 4 levels. The images in the bandpass pyramid may contain
negative values. For this reason, the figure shows zero values as
middle gray.

(a)

(b)

Figure 1: Lowpass (a) and Bandpass (b) Pyramids

Note that the lowpass pyramid is a redundant representation
since the same information is present at all levels of the pyramid.
The bandpass pyramid, on the other hand, is not redundant because
it keeps only the information necessary to go from coarse to fine
resolution levels.

A Wavelet pyramid is a kind of bandpass pyramid which dis-
criminates image details along the horizontal, vertical and diagonal
directions, [6].

2.2 Multiresolution Painting and Compositing

There are two main ways in which image operations can be incor-
porated into a multiresolution paint system: by re-execution or by
lazy evaluation.

If the system allows the image to be represented at arbitrarily
high resolutions, then it is not possible to perform image operations
at all levels simultaneously during the interaction cycle. Multires-
olution paint systems generally deal with this as follows: while
the user is painting, the system only updates the currently visible
level. Changes to the image are cached, to be propagated to other
resolution levels at a later time. What distinguishes different im-
plementations of image operations is the strategy used to postpone
the propagation of changes.

If a re-execution strategy is used, changes are cached as pre-
scriptions for redrawing. When the user moves to another level of
detail, all cached operations are re-executed at that level.

If a lazy evaluation strategy is used, modifications to the image
are iteratively propagated through the image pyramid when the user
magnifies the view to successively more detailed levels. Changes
that will affect higher resolutions are evaluated only when the user
first magnifies the view sufficiently to see these resolutions.

2.3 Classification of Multiresolution Paint Systems

The multiresolution image data structures and operations described
above have a direct correspondence with one another. Accordingly,
there are two types of multiresolution paint systems:

I – Lowpass pyramid + Re-execution strategy

II – Bandpass pyramid + Lazy evaluation strategy

Examples of type I systems are Live Picture [5] and XRes [12].
Examples of type II systems are the Haar wavelet [1] and the B-
spline wavelet [10] paint programs.

The general idea of multiresolution painting tools applies equal-
ly well to painting systems of types I and II. Although in this paper
we will emphasize implementation techniques that are more suited
to systems of type II, the same techniques could be used with proper
changes in systems of type I.

3 Multiresolution Textures

In this section we introduce the concept of multiscale textures and
discuss how they are implemented.

3.1 Motivation

Let us say that a user of a paint system wishes to paint with a “rock”
generating brush. After painting, the user should subsequently be
able to zoom in and continue to see ever finer details of the rock
texture.

Alternatively, if the user paints with a “checkerboard” brush,
then no matter how far s/he zooms into the checkerboard texture,
the boundaries between the white and black squares should always
remain sharp.

Let us now suppose that the user paints some rock, then zooms
in a bit and paints some translucent checkerboard over the rock. As
the user zooms in, arbitrarily small rock details should still be visible
behind the checkerboard, but attenuated. Both of the composited
textures should continue to reveal more high frequency detail as the
user’s view zooms in.

The user should, for example, be able to paint with a brush
which consists of one part checkerboard and two parts rock, or in
fact to freely mix any such texture elements.

In this manner, the user should be able to paint with and to
composite many different layers of procedural texture, with the ex-
pectation that all visible layers will appear in the proper proportion
at all levels of detail.

3.2 How to do this

In order to implement this behavior we have developed a model
for multiscale painted texture that allows procedural textures to be
combined additively.

The key insight is that texture must be added in two distinct
ways:

(1) Whenever the user paints a texture, the system must display
that texture’s initial appearance.

(2) As the user successively magnifies the view, the system must
continue to add detail to the painted texture.

It is the responsibility of the texture procedure to perform these two
functions.

To make this all happen properly and efficiently, we need two
tools: Procedural Bandpass Pyramids and Procedural Ink.

3.3 Procedural Bandpass Pyramids

To do sharpening properly, we use procedural bandpass pyramids.
First let us briefly review bandpass image pyramids. Each level of a
bandpass pyramid gives the difference in detail between successive
submagnifications of an image. Consider an image of resolution
2
n � 2

n. If we want to view this image at a resolution of 2n�1 �
2
n�1 , we can blur it using a smoothing filter and then decimate. If

the image is then blown up again with a good interpolation filter,
it will appear blurry. Information has been lost. We must add a
correction to each pixel of this blurry image in order to recreate the
original image. This correction is itself a 2n�2

n image containing
the image details that were lost.

If we apply the same process to the decimated image, recur-
sively, we can create a sequenceof such detail images with descend-
ing resolutions: 2n� 2n , 2n�1� 2n�1 , :::2� 2. This sequence of
images constitutes a bandpass pyramid [2].

Once we have its bandpass pyramid, we can reconstitute an
image at any submagnification. Beginning with a single pixel, we
magnify and add the 2 � 2 bandpass image, then repeat with the
4� 4 bandpass image, and so on. The pixels of the 2k � 2k image
of a bandpass pyramid are called “level-k bandpass coefficients”.

A multiresolution paint system can show an image at various
scales. Bandpass coefficients make up the difference between the
less detailed view that is visible when the image is small, and the
more detailed image that is available after magnifying by two. If
we look at it this way, we can see that as we continue to magnify
the user’s view of a texture, our texture procedure should corre-
spondingly add in the next level of bandpass coefficients, so that
the texture will always have sharp detail.

Images are finite. At some point a multiresolution paint system
will magnify the view beyond any stored image’s resolution. For
levels beyond this, the image simply becomes blurrier, since it
can contribute no more bandpass coefficients. In other words, the
image’s bandpass pyramid is of finite depth.

But procedural textures are not so restricted. We can define
a “procedural” bandpass pyramid which given a type, and values
for x, y, and level, returns the difference in a texture’s appearance
when viewed at successive magnifications. Procedural bandpass
pyramids can be of infinite depth.

Here is a simple example. It is well known that the appearance
of rock can be synthesized by 1=f noise [9]. The difference in this
texture’s appearance between successive magnifications is just the
addition of attenuated random noise at the higher magnification. A
procedure that simulates a bandpass pyramid with this behavior is
quite simple to define:

add texture(ROCK; x; y; level) :=
pseudorandom(x; y; level)

2level=2

where the pseudorandom function is implemented by the same per-
mutation method used to choose pseudorandom gradients from Z

3

for the Noise function [9].
The tricky aspect of this process is that we need to sharpen each

painted texture only the first time that the view is magnified to a new
level of greatest detail. For example, if the user paints a texture,
then zooms in and out a few times, we do not want to add bandpass
coefficients to the texture again and again. The result would be
incorrect. For this reason, texture propagation is controlled by
procedural “ink”.

3.4 Procedural Ink

In the sections that follow, we will use the phrase “texture instance”
to refer to a primitive texture component. Some examples are: rock
of a particular scale, a checkerboard of a certain size, sawtooth
stripes of a particular width, or a source image texture painted on
at a certain scale. We build all textures as combinations of texture
instances.

Procedural ink is texture in latent state. We represent it as a
vector of amplitudes; each element of the ink vector modulates the
amplitude of one texture instance. The first ink channel is reserved
for ink.alpha – the attenuation of the ink vector itself. All elements
of the ink vector will be attenuated by this ink.alpha.

Textures are mixed by compositing and layering ink vectors.
The resulting composite ink vector is then used to control a texture
generator procedure. Here is a key point: Because all elements of
an ink vector are premultiplied by ink.alpha, we can mix textures
simply by adding various ink vectors.

As noted above, we want to do sharpening only the first time
that a viewer magnifies a painted area to a new view. In order to
accomplish this we need a form of lazy evaluation. This is where
the ink comes in. Ink controls when the texture gets sharpened.
The key property of ink is that it flows downhill – toward levels of
ever greater detail. As ink flows down, it causes the system to refine
those texture instances which the ink modulates.

More precisely, each element of the ink vector is used to scale
the bandpass coefficients that must be added in order to sharpen one
texture instance.

Ink is only used for texture refinement at the moment that it first
enters a view level. This will happen only in one case: when there
is ink at the current view, and then the user magnifies the view. At
this time, the used ink leaves the coarser level, and pools at the more
detailed level, waiting for the user to further magnify the view.

Note that there can be considerable delay between the time that
a texture is painted and the time that this lazy-evaluation sharpen-
ing occurs. For example, the user might paint at some level, then
decrease the magnification, zooming out to paint something some-
where else. Meanwhile, the ink is still sitting at the former level.
When the user later returns to that view and magnifies, only then
will the ink continue its downward journey.

4 Where Texture is called

Texture is called in two places: once as the user interactively paints,
and again when the view is magnified, in order to add bandpass
coefficients.

4.1 Texturing during painting

When the user paints at a sample using drawing ink, and with
opacity drawing alpha, then the color, alpha and ink at the sample
are modified as follows:

(1) color := texture(drawing ink) OVERdrawing alpha color

(2) alpha := 1.0 OVERdrawing alpha alpha

(3) ink := drawing ink OVERdrawing alpha ink

where “b OVERt a” denotes linear interpolation a+t(b�a), texture
is a compound procedural texture as defined in subsection 5.2, and
ink is a prescription for evaluating the procedural texture.

This is the point where the ink is first injected into the system,
and where the first, coarse view of the texture is painted. Note that
the new color is merged directly into the sample. There is no need
to explicitly store back-to-front layers.

4.2 Texture refinement during magnification

Texture is also invoked when the user increases the magnification
level of the view. As the user’s view changes from a coarser level
to a more detailed level, ink flows down to this new level, so that
more texture detail can be induced.

When the view is magnified from a coarser to a more detailed
level, we need to propagate both color and ink to the new level. To
describe this process, we define:

� detail: the portion of a sample’s color at the more detailed
level that was too finely detailed to be visible at the coarser
level. This quantity is generated by the multiresolution paint
system at the moment that magnification was reduced. If this
is the first time that we have ever visited the more detailed
level, then this quantity will be zero. In our implementation,
this quantity is computed from B-spline wavelets.

� coarse: a magnified view of what is currently visible at the
coarser level.

� new ink: a magnified view of the new ink from all coarser
levels which now needs to flow down to this more detailed
level.

Let us first review the magnification procedure in a multiresolu-
tion paint system that uses lazy evaluation, but that does not support
procedural texture. In such a system, ink is just a vector of [red,
green, blue, alpha].

Let us consider the situation where the user has painted with
new ink at some coarser level after the last time s/he had visited the
next more detailed level. Now the user wants to magnify the view.
Because the system has lazy evaluation, this new ink will not yet
be incorporated into the more detailed level. To incorporate this
new ink, we do the following steps at the more detailed level:

(1) color := coarse + (1 - new ink.alpha) * detail

(2) ink := new ink OVERnew ink.alpha ink

Notice that we do not do an OVER operation in step (1). This is
because the coarse value already incorporates all new ink that has
been painted at all coarser levels. Only the detail is out of date.

After this, we erase (i.e. set to zero) all the ink at the coarse
level that has flowed to the more detailed level. The general effect
is that as the user’s view is progressively magnified, ink at coarser
levels continually “flows down” to more detailed levels. As it does
so, its appearance becomes progressively blurrier.

To support procedural texture, we need only to add a term to
step (1):

(1) color := coarse + texture(new ink)
+ (1 - new ink.alpha) * detail

Note that all elements of new ink are already attenuated by
new ink.alpha. The result is that all added texture is attenuated
by new ink.alpha. That is why we simply add texture, instead of
overlaying it on top of the detail.

Now as the ink flows down, it is continually refined.

5 From Ink to Texture

Texture comes in different “types”. Each type requires a different
refinement method.

In the following sections, we describe how texture is combined,
show various texture procedures, and give some examples.
5.1 Types and Instances

As described above, a procedural texture is built up by adding
bandpass coefficients to each texture instance modulated by the ink
vector, at successive levels of detail.

The “type” of a texture instance identifies the method that is
used for adding bandpass coefficients at each level. The method
chosen will determine the general look of the texture.

Each texture instance is identified by:

- its type

- its base magnification level (equal to the view level at which
the user painted the texture).

A unique element of the ink vector is allocated to each texture
instance, the first time that instance is painted. This ink element
contains the amplitude that will be used to scale the bandpass coef-
ficients as that texture instance is refined.

5.2 Adding Texture

All texture instances are combined linearly. The texture procedure
simply loops through the ink vector and sums the contribution from
each instance i:
X

i

amplitudei � add texture(typei; x; y; level� base leveli)

Note that this arrangement allows us to linearly combine dif-
ferent ink vectors. As any ink element is attenuated, the detail
values added to its corresponding texture instance will be equally
attenuated.

5.3 Some Examples of Texture Types

For each type of texture, there is a corresponding procedural band-
pass pyramid; a function that computes how much detail must be
added into that texture at each level. We now describe the procedural
bandpass pyramid used to construct various specific types of tex-
ture. Each type is specified in Boldface, followed by its refinement
method.

The variable dlevel below refers to the difference between the
current level and the texture instance’s base magnification level.
Note that dlevel = 0 when the first coarse texture is painted, and that
dlevel > 0 whenever the texture is subsequently sharpened.
White:

if dlevel = 0 then 1 else 0
Rock:

pseudorandom(x,y,dlevel) / 2dlevel=2

Stripes:
sqr wave(x) / (dlevel + 0:4)

0:1

Sawtooth:
saw wave(x) / (dlevel + 1)

0:14

Squares:
sqr wave(x) * sqr wave(y) / (dlevel + 0:1)

0:14

where sqr wave and saw wave are defined as follows:

square wave(x)
if i = 0 or i = n/2-1 then 1
else if i = n/2 or i = n-1 then -1 else 0

saw wave(x)
if i = 0 then 1 else if i = n-1 then -1 else 0

with n := 2dlevel+1 and i := xmod n.

In practice each of the above power curves is computed only
once, and then stored in a table, which is subsequently indexed
by dlevel. These particular power curves depend on the B-spline
reconstruction kernel that we use, [10]. A system with a different
reconstruction kernel would require different curves.

White is handled as a special case, since White texture requires
no sharpening. For this reason, in practice we modulate all White
texture instances in one element of drawing ink. We change the
amplitude of this element each time the user lightens or darkens the
brush.

6 Examples

In this section we give some examples of the procedural multires-
olution textures and their use. First we show some examples of
magnifying and compositing textures. Then we present a more ad-
vanced example: creating an entire multiresolution terrain model
by painting with procedural textures.

6.1 Simple Examples

Figure 2(a) shows the name of a beautiful city written with a saw-
tooth generating brush. Figure 2(b) is a magnified view into the dot
above the letter "i". Figure 2(c) is magnified even further. Each im-
age is four times the magnification of the previous image. We note
that the intensity ramps in the horizontal direction are piecewise
linear.

Figure 3 shows successive magnifications of a translucent blend-
ing of three active textures: rock, squares, and horizontal stripes.
Note how in Figure 3(c) the squares texture smoothly blends into
the stripes texture.

Figure 4 shows the effect of a smoothing brush. This brush sim-
ply averages neighboring values in the image, and blends the result
with White ink. The White ink element modulates brightness; the
alpha ink element modulates opacity. The most important effect of
this brush is that it locally reduces or eliminates texture sharpening.
Figure 4(a) shows rock texture. Figure 4(b) shows an “X” drawn
over this with a smoothing brush. Figure 4(c) is a magnified view
into just below the central cross of the “X”.

6.2 Advanced Example: A Terrain Model

Terrain modeling is an important application where fractal images
may be used to describe elevation data [3], [4]. This example
exploits the expressiveness of procedural textures in a system that
combines interactive painting with 3D visualization.

Figure 5 shows a terrain being interactively modeled in the
system. On the right, the user sees an interactive height field view
of the intensity image. First we will describe this interaction tool,
and then we will discuss the example in Figure 5.

The user sees a perspective view of intensity, as a height field
mesh. The mesh is rendered back to front, so no Z buffer is required.
The brightness at each location on this mesh is composed of a
weighted sum of that location’s height and directional derivatives.
The user can interactively pan and tilt this view with the mouse.

In order to maintain interactivity on platforms that do not have
polygon transformation hardware, we use progressive refinement.
The user can change the view and see the results in real time over
a coarse mesh approximation. Then while the user goes back to
painting, the terrain model gradually increases to full resolution over
several seconds, as a background activity. Any further changes to
the view during this time will interrupt the refinement process and
start it again.

In figure 5(a) we see a height field created by magnifying the
view into a squiggle drawn with a rock texture. In figure 5(b) we
have drawn a new rock texture instance as a wavy horizontal across
the image. In the height field view, this appears as a mountainous
ridge across the terrain. We also have drawn with a dark erasing
brush near the bottom of the image to simulate the flat terrain of a
river.

In figure 5(c) we magnify the view into the bay that appeared
in the lower left of figure 5(b). Then, we sprinkle some individual
bright squares near the river. In the height field view these appear
as tall buildings. Note that the edges of these buildings will be
perfectly sharp, no matter how close we get.

In this same figure, we have also used a transparent brush to
paint some squares generating texture at several scales, in order to
simulate a large cityscape. This can be seen at the left edge of the
image. As we paint, the opacity of the brush controls the height of
the buildings at the brush. The more time we spend over any area,
the taller the buildings grow.

This entire process took less than a minute of painting.

7 Using Images

In this section we discuss how images can be used to complement
our framework for multiresolution procedural textures.

7.1 Images as Procedural Brushes

In addition to using textures that are strictly procedural, we can
use a multiresolution image as a texture source [7]. This enables
many useful paint operations and provides a way to seamlessly
incorporate multiresolution images into the system.

A multiresolution source image is represented internally by a
bandpass pyramid, ie. a coarse image at the base resolution level
and a sequence of detail images for the other levels.

The corresponding data structure is:

- size of the base image (n�m)

- number of levels of the bandpass pyramid

- bandpass pyramid

The encapsulation of images in a procedural brush is done by
associating a source image with a texture instance. When the user
selects a source image to paint, a new texture is instantiated: an
index of the ink vector is allocated, a reference from this index to
the data structure representing the selected image is established,
and the base level is set to the current resolution level.

An image texture is similar to a procedural texture with the
exception that the values are copied from its bandpass pyramid
instead of being generated algorithmically. The operation is divided
in two parts: at the base level pixels are copied from the base image
onto the canvas; when the user changes level and the image needs
to be refined, the bandpass coefficients are added.

Before using a source image as a procedural brush, we need
first to construct a bandpass pyramid for it. For this purpose, we
employ a modified version of the wavelet transform engine used
in the system. This can be done as an independent operation by a
program that builds a library of source image brushes or as a built-in
operation of the paint system to create a source image brush from
any rectangular region of the canvas.

Source images can be replicated by the procedural brush to
cover a larger region of the canvas by using a rectangular tiling
arrangement. Image replication has to be taken into account in the
construction of the bandpass pyramid. If we wish the texture to
tile the source image, then we must employ “toroidal” end condi-
tions when building the pyramid, with both horizontal and vertical
wraparound.

7.2 Synthesizing Textures from Image Samples

The design of procedural textures usually requires some kind of
programming [9]. A powerful alternative to this way of creat-
ing procedural textures is the automatic generation of a procedural
bandpass pyramid from a sample image of the texture.

For this, we need a mechanism to predict the coefficients of the
next level of the pyramid based on the current ones. In some cases,
the prediction rules are very simple. For example, in the case of
perfectly sharp edges and fractals the coefficients are multiples of
each other as shown in subsection 5.3.

In the general case, the mappings between coefficients at dif-
ferent levels are inherently non-linear and multi-modal. We are
currently investigating a technique to generate these mappings from
a statistical analysis of a sample texture. This technique is similar
to the one used for image compression in [8]. The method is based
on a vector quantization of the bandpass pyramid and a subsequent
analysis of the correlation between the codes generated by the vec-
tor quantizer. This analysis allows us to build a prediction table
for each code in a codebook, which gives a mapping from coarser
to more detailed bandpass coefficients. The texture procedure then
uses the prediction tables to generate new bandpass coefficients
during refinement.

8 Conclusions

In this paper we have introduced the concept of actively procedural
multiresolution paint textures. These are live picture elements that
continue to refine themselves when viewed at magnifications greater
than the one at which they were originally painted.

8.1 Summary

We presented a framework to implement these active textures and
incorporate them as procedural brushes into a multiresolution paint
system.

We have described a simple way to linearly combine primitive
texture elements in order to create complex composite textures. We
have explained how to use source images in proceduralbrushes. We
have discussed how to automatically generate multiresolution pro-
cedural textures from an image sample of the texture. We have given
several examples of the use of our framework in a multiresolution
paint system.

In conclusion, active procedural texture constitutes a powerful
new painting tool to more fully exploit the power of multiresolution
paint systems.

8.2 Future Work

Future work should go in several main directions:

� Enhancing the capabilities of the current framework;

� Adding more texture generators of interest;

� Developing an environment for the design of procedural tex-
tures;

� Investigating extrapolation techniques to generate missing
image details.

The current framework could be enhanced by incorporating
the notion of layers and interpreted code, as in [9], to combine
texture instances in arbitrary ways. This capability would allow the
generation of arbitrarily complex infinite resolution textures from
simple primitives and operators.

We also plan to build up a family of texture generators for
simulating terrains of architectural interest. This would include
treetops, shrubbery, the appearance of rows of houses – including
slanted roofs and chimneys and even roof texture – and so on. The
idea is that an Architect could work up a sketch of a landscaping,
or cluster of dwellings, or a city, using broad strokes – perhaps just
to play with the feel of how various arrangements would look.

From a production standpoint, it would be good to have a com-
plete environment for designing multiresolution procedural tex-
tures. This would include programming, testing and debugging
facilities that can work together with the paint system.

A final area of investigation is the use of techniques for analyzing
the correlation between levels of the bandpass pyramid described
in Section 3 in order to perform extrapolation of coarse resolution
images when detail information is not available.

Acknowledgements

The authors wish to thank Lance Williams for fruitful discussions
and for pointing out the work of [8]. Many thanks also to Stephane
Mallat for several valuable suggestions. Special thanks to Karl Sims
for inspiring comments on multiscale noise.

This work was partially supported by grants from MCT/CNPq
– Conselho Nacional de Desenvolvimento Científico e Tecnológico
and from the National Science Foundation.

REFERENCES

[1] Deborah Berman, Jason Bartell, and David Salesin. Multires-
olution painting and compositing. Computer Graphics, An-
nual Conference Series (SIGGRAPH ’94 Proceedings), pages
85–90, 1994.

[2] Peter J. Burt. The laplacian pyramid as a compact image
code. IEEE Transactions on Communications, 31:532–540,
April 1983.

[3] Alain Fournier, Don Fussell, and Loren Carpenter. Computer
rendering of stochastic models. Communications of the ACM,
25(6):371–384, June 1982.

[4] John Peter Lewis. Texture synthesis for digital painting. Com-
puter Graphics (SIGGRAPH ’84 Proceedings), 18(3):245–
252, July 1984.

[5] Lively pictures. Byte Magazine, 20(1):171–174, 1995. Live
Picture – Product Review.

[6] Stephane Mallat. Multifrequency channel decompositions of
images and wavelet models. IEEE Trans. on Acoust. Signal
Speech Process., 37(12):2091–2110, 1989.

[7] Joan M. Ogden, Edward H. Adelson, J.R. Bergen, and Pe-
ter J. Burt. Pyramid-based computer graphics. RCA Engineer,
30(5):4–13, September–October 1985.

[8] Alex Pentland and Bradley Horowitz. A practical approach
to fractal-based image compression. In Proceedings of Data
Compression Conference, pages 176–185, held in Snowbird,
UT, 1991. IEEE Computer Society Press.

[9] Ken Perlin. An image synthesizer. Computer Graphics (SIG-
GRAPH ’85 Proceedings), 19(3):287–293, 1985.

[10] Ken Perlin and Luiz Velho. A wavelet representation for
unbounded resolution painting. Technical report, New York
University, New York, 1992.

[11] Lance Williams. Pyramidal parametrics. Computer Graphics
(SIGGRAPH ’83 Proceedings), 17(3):1–11, July 1983.

[12] Xres, the alternative to photoshop? Mac Format Magazine,
23, pages 72–74, 1995. XRes – Graphics Software Review.

(a) (b) (c)

Figure 2: Sawtooth Texture

(a) (b) (c)

Figure 3: Blending of rock, squares, and horizontal stripes

(a) (b) (c)

Figure 4: The effect of a smoothing brush

(a)

(b)

(c)

Figure 5: Interactive design of a terrain model

